首页|基于双向多层门控循环神经网络的奶牛乳脂率预测模型研究

基于双向多层门控循环神经网络的奶牛乳脂率预测模型研究

扫码查看
通过对奶牛乳脂率进行数据预测以及结合随机森林算法对环境数据进行精准特征选择,确定了对乳脂率影响较大的环境因素.在此基础上,提出了将随机森林算法与双向多层门控循环神经网络相结合的乳脂率预测模型(RF-BiGRU)并进行了相关实验.结果表明,该模型能够提高预测的准确性及效率.
Study on the Prediction Model of Milk Fat Rate of Dairy Cows Based on Bidirectional Multilayer Gated Recurrent Neural Network
Through data prediction of the milk fat rate of cows and precise feature selection of environmental data using the random forest algorithm,the ecological factors that significantly impact the milk fat rate were determined.On this basis,a milk fat rate prediction model(RF-BiGRU)that combines random forests with bidirectional gated recurrent neural networks was proposed,and related experiments were conducted.The results show that the model can improve the accuracy and efficiency of prediction.

physiological prediction model of cowrandom forest algorithmbidirectional multilayer gated recurrent neural network

朱孟宇、由楚川、赵军

展开 >

宁夏大学 信息工程学院,宁夏 银川 750021

辽宁科技学院 电子与信息工程学院,辽宁 本溪 117004

宁夏大学 经济管理学院,宁夏 银川 750021

奶牛生理预测模型 随机森林算法 双向多层门控循环神经网络模型

宁夏回族自治区自然科学基金

2020AAC03028

2024

宁夏工程技术
宁夏大学

宁夏工程技术

影响因子:0.185
ISSN:1671-7244
年,卷(期):2024.23(1)
  • 21