首页|乳腺癌超声图像分割算法研究

乳腺癌超声图像分割算法研究

扫码查看
针对乳腺癌超声图像分割问题,提出了一种基于掩膜区域卷积神经网络(Mask R-CNN)的算法.首先,进行了超声图像分割网络的算法设计;其次,将整理好的数据集制成COCO数据集图像分割形式,提取了训练集和测试集;最后,采用迁移学习方法对网络进行了训练,得出全部测试集的乳腺癌超声图像分割结果图,并且以Dice系数、交并比和平均类准确率为评价指标对图像分割效果进行了评估.结果表明,该算法的Dice系数达到 0.91,显著提升了乳腺癌超声图像病变组织的分割精确度.
Deep Learning Based Ultrasound Image Segmentation Method for Breast Cancer
For the problem of breast cancer ultrasound image segmentation,an algorithm based on Mask Region Convolutional Neural Network(Mask R-CNN)is proposed.Firstly,the algorithm design of ultrasound image segmentation network was carried out;secondly,the organized dataset was made into the form of image segmentation of COCO dataset,and the training and test sets were extracted;finally,the network was trained by using the migration learning method,and the resultant graphs of breast cancer ultrasound image segmentation of all test sets were derived,and the image was evaluated using Dice coefficients,intersections and concatenation ratios and the average class accuracy rate as evaluation metrics.The segmentation results were evaluated using Dice coefficient,intersection ratio and average class accuracy as evaluation metrics.The results show that the Dice coefficient of the algorithm reaches 0.91,which significantly improves the segmentation accuracy of lesion tissue in breast cancer ultrasound images.

Mask R-CNNbreast cancerultrasound imagesimage segmentation

邬迎节、李春树

展开 >

宁夏大学 电子与电气工程学院,宁夏 银川 750021

Mask R-CNN 乳腺癌 超声图像 图像分割

宁夏回族自治区自然科学基金宁夏大学研究生创新项目

2020AAC3033GIP2020074

2024

宁夏工程技术
宁夏大学

宁夏工程技术

影响因子:0.185
ISSN:1671-7244
年,卷(期):2024.23(1)
  • 12