首页|基于MediaPipe Pose的人体动作识别方法研究

基于MediaPipe Pose的人体动作识别方法研究

扫码查看
针对已有人体动作识别方法存在识别效率低、检测速度慢等问题,提出了基于MediaPipe Pose算法的人体动作识别方法.具体内容:将摄像头实时采集数据输入到检测网络以获取人体 33 个关键点的坐标信息,然后通过关键点的空间位置组合来确定人体动作类别;采用COCO数据集格式标定动作类别,并且对动作标签进行one-hot 编码,训练人体动作识别模型;利用单目RGB摄像头对 8 类动作进行实验验证.结果表明,基于MediaPipe Pose算法的人体动作识别方法其帧率达到30 帧/s,识别精确率为96.67%,能够实时、准确地识别人体动作.
Research on Human Motion Recognition Methods Based on MediaPipe Pose
To surmount the prevalent challenges of low recognition efficiency and sluggish detection velocities in extant human action recognition algorithms,a novel approach predicated on the MediaPipe Pose algorithm has been developed.This approach involves the real-time acquisition of data via a camera,which is processed by a detection network to ascertain the coordinates of thirty-three salient body keypoints.Subsequently,the configuration of these keypoints in space is utilized to categorize human actions.Action categories are delineated according to the COCO dataset nomenclature,with action labels subjected to one-hot encoding.This procedure facilitates the refinement of a model dedicated to human action recognition.Experimental validation was conducted on eight distinct actions using a monocular RGB camera.Findings indicate that the action recognition method predicated on the MediaPipe Pose algorithm attained a frame rate of 30 f/s and a precision rate of 96.67%,thereby ensuring the real-time and accurate discernment of human movements.

MediaPipe Posehuman action recognitiondeep learning

张恒博、刘大铭、伏娜娜、邢霄海

展开 >

宁夏大学 电子与电气工程学院,宁夏银川 750021

MediaPipe Pose 人体动作识别 深度学习

2024

宁夏工程技术
宁夏大学

宁夏工程技术

影响因子:0.185
ISSN:1671-7244
年,卷(期):2024.23(1)
  • 11