首页|基于语义分割的道路坑洼检测研究

基于语义分割的道路坑洼检测研究

扫码查看
道路坑洼检测对驾驶安全性、行车舒适性、路容路貌等方面都具有十分重要的意义。针对传统道路坑洼检测只能划定坑洼所在区域的大体位置,不能明确划分坑洼区域覆盖范围,视觉效果差,检测不明显等问题,本文提出了一种基于语义分割的道路坑洼检测网络。该网络在U-Net的基础上,用VggNet网络替代原始U-Net网络下采样部分,既加深了网络深度,又引入了更多的非线性因素,使网络能够更好地拟合现实数据分布,增加其泛化能力,简化了模型结构和计算过程。采用新型组合损失函数,提高了网络的收敛速度和预测精度。实验表明,相对于传统U-Net网络、PSPNet网络和Deeplab网络,所提网络的道路坑洼分割图像的平均交并比提高 5。12%以上,类别平均像素准确率提高 4。95%以上,准确率提高 1。2%以上,召回率提高 4。95%以上,提高了分割精度,对道路坑洼检测具有一定的参考价值。
Research on Road Pothole Detection Based on Semantic Segmentation
Road pothole detection holds significant importance for driving safety,travel comfort,and the overall appearance of roadways.Traditional methods of pothole detection typically only delineate the general location of potholes without clearly defining the extent of the affected areas,often resulting in poor visual representation and ineffective detection.In response to these challenges,a novel detection network based on semantic segmentation is proposed in this paper.This network enhances the original U-Net architecture by replacing its down-sampling component with VggNet,thereby deepening the network and introducing additional nonlinear factors.This modification allows for a superior fitting of real-world data distributions,enhances generalization capabilities,and simplifies both the model structure and computational processes.A new combined loss function is employed to accelerate network convergence and improve prediction accuracy.Experimental results indicate that,in comparison to traditional U-Net,PSPNet,and Deeplab networks,the proposed network achieves an improvement of more than 5.12%in the average Intersection over Union(IoU)for pothole segmentation images,an increase of over 4.95%in average pixel accuracy across categories,and enhancements of more than 1.2%in precision and 4.95%in recall.These improvements substantiate the efficacy of the proposed approach,providing a valuable reference for road pothole detection.

semantic segmentationroad pothole detectiondeep learningcombined loss function

周文彬、李春树

展开 >

宁夏大学 电子与电气工程学院,宁夏 银川 750021

语义分割 道路坑洼检测 深度学习 组合损失函数

宁夏自然科学基金项目宁夏大学研究生创新项目

2020AAC03033GIP2020074

2024

宁夏工程技术
宁夏大学

宁夏工程技术

影响因子:0.185
ISSN:1671-7244
年,卷(期):2024.23(3)
  • 3