首页|结合全局和局部特征的深度哈希细粒度图像检索

结合全局和局部特征的深度哈希细粒度图像检索

扫码查看
现有深度哈希细粒度图像检索方法在特征提取时往往注重于提取具有较强分辨率的特征,忽视其他有价值区域且未考虑全局特征与局部特征间的交互,造成特征提取不充分,局部信息丢失和特征冗余等问题,本文引入Conformer模型并进行改进。首先,引入特征细化模块,弱化高响应区域特征,使模型可以关注其余特征信息,获取完整的图像特征;其次利用多尺度空洞卷积模块替换Conformer模型CNN分支的卷积块,通过特征提取能力更强的网络来实现全局特征和局部特征间的交互,进而提取更丰富的图像特征;最后,引入带有多样性损失的多分支注意力模块以获取不同维度的注意力特征,在去除背景干扰的特征上自适应筛选更精细的局部细粒度特征,抑制冗余特征。实验结果表明,所提方法在CUB-200-2011,FGVC-Aircraft,Stanford Cars和Stanford Dogs四个细粒度图像数据集上,使用 16 bits哈希码的分类精度分别达到 65。73%,81。32%,76。45%和 68。41%,优于现有的深度哈希细粒度图像检索方法,检索结果较好。
Deep Hashing for Fine-Grained Image Retrieval Combining Global and Local Features
The existing deep hashing methods for fine-grained image retrieval often focus on extracting high-resolution features while neglecting other valuable regions and failing to consider the interaction between global and local features.This results in insufficient feature extraction,loss of local information,and feature redundancy.In this paper,the Conformer model is introduced and improved.Firstly,a feature refinement module is introduced to weaken the features of high-response regions,allowing the model to pay attention to the remaining feature information and obtain complete image features.Secondly,the convolutional blocks of the CNN branch in the Conformer model is replaced with a multi-scale dilated convolution module,enabling interaction between global and local features through a network with stronger feature extraction capabilities,thereby extracting richer image features.Finally,a multi-branch attention module with diversity loss is introduced to obtain attention features of different dimensions,adaptively filtering more fine-grained local features while removing background interference and suppressing redundant features.Experimental results show that the proposed method achieves classification accuracies of 65.73%,81.32%,76.45%and 68.41%respectively using 16-bit hash codes on four fine-grained image datasets:CUB-200-2011,FGVC-Aircraft,Stanford Cars and Stanford Dogs,outperforming existing deep hashing methods for fine-grained image retrieval and yielding better retrieval results.

fine-grained image retrievalattention mechanismmulti-scale cavity convolutionfeature extraction

习怡萌、秦飞舟、李宏斌、刘立波

展开 >

宁夏大学信息工程学院,宁夏银川 750021

细粒度图像检索 注意力机制 多尺度空洞卷积 特征提取

国家自然科学基金资助项目宁夏高等学校科学研究项目

62262053NYG2022012

2024

宁夏工程技术
宁夏大学

宁夏工程技术

影响因子:0.185
ISSN:1671-7244
年,卷(期):2024.23(3)
  • 1