首页|2型糖尿病周围神经病变患者发生干眼症的影响因素及预测模型

2型糖尿病周围神经病变患者发生干眼症的影响因素及预测模型

扫码查看
目的 探讨2型糖尿病周围神经病变患者发生干眼症的影响因素,并构建列线图预测模型.方法 选择收治的78例2型糖尿病周围神经病变患者,根据是否发生干眼症情况将患者分为干眼组(18例26眼)与无干眼组(60例94眼),通过比较2组间患者性别、年龄、病程、眼别、合并高血压、神经病变严重程度、泪腺功能障碍、胰岛素分泌不足、疾病认知水平、用药依从性,炎症因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α),血清空腹血糖(FPG)、糖化血红蛋白(HbA1c)等资料,利用多因素logistic回归分析2型糖尿病周围神经病变患者发生干眼症的影响因素.运用R4.3.0软件绘制列线图模型,并采用受试者工作特征(ROC)曲线评估模型的区分度.使用Bootstrap方法进行1000次重复采样,以验证列线图模型的预测效能.结果2组患者在神经病变严重程度、泪腺功能障碍、胰岛素分泌不足、疾病认知水平、用药依从性、IL-1β、IL-6、TNF-α、FPG、HbA1c等方面差异有统计学意义(P<0.05);多因素logistic回归分析显示,重度神经病变、有泪腺功能障碍、胰岛素分泌不足、疾病认知水平低、用药依从性差及IL-1β、IL-6、TNF-α、FPG、HbA1c水平高是2型糖尿病周围神经病变患者发生干眼症的独立危险因素(P<0.05);ROC曲线分析结果显示,多因素联合预测模型的AUC值为0.961(95%CI:0.931-0.992),表明模型具有较好的区分能力;Bootstrap验证表明,模型的偏差校准曲线与理想曲线吻合良好.结论 重度神经病变、泪腺功能障碍、胰岛素分泌不足、疾病认知水平低、用药依从性差以及较高的IL-1β、IL-6、TNF-α、FPG、HbA1c水平是2型糖尿病周围神经病变患者发生干眼症的独立危险因素.构建的多因素联合预测模型具有较好的区分能力,可有效预测患者发生干眼症的风险,对临床诊断和治疗具有重要意义.
Influencing factors and prediction model of the occurrence of dry eye disease in type 2 diabetes patients with peripheral neuropathy
Objective To investigate the influencing factors of dry eye disease in type 2 diabetes mellitus(T2DM)patients with peripheral neuropathy,and to construct a nomogram prediction model.Methods 78 T2DM patients with peripheral neuropathy were selected and divided into two groups based on the occurrence of dry eye disease:the dry eye group(18 patients,26 eyes)and the non-dry eye group(60 patients,94 eyes).Clinical data such as gender,age,duration of disease,eye involvement,concurrent hypertension,se-verity of neuropathy,lacrimal gland dysfunction,insulin deficiency,disease awareness level,medication adherence,inflammatory factors[Interleukin-1β(IL-1β),Interleukin-6(IL-6),Tumor Necrosis Factor-α(TNF-α)],fasting plasma glucose(FPG),and gly-cated hemoglobin(HbA1c)were compared between the two groups.Multifactorial logistic regression analysis was used to identify the in-dependent risk factors of the occurrence of dry eye disease in these patients.A nomogram model was constructed by using R4.3.0 soft-ware,and its discriminative ability was evaluated by using the Receiver Operating Characteristic(ROC)curve.The predictive perform-ance of model was validated with 1000 bootstrap resamples.Results Significant differences were observed between the two groups in terms of severity of neuropathy,lacrimal gland dysfunction,insulin deficiency,disease awareness level,medication adherence,IL-1 β,IL-6,TNF-α,FPG,and HbA1c levels(P<0.05).Multifactorial logistic regression analysis revealed that severe neuropathy,lacrimal gland dysfunction,insulin deficiency,low disease awareness level,poor medication adherence,and high levels of IL-1β,IL-6,TNF-α,FPG,and HbA1c were independent risk factors for the occurrence of dry eye disease in T2DM patients with peripheral neuropathy(P<0.05).The results of the ROC curve analysis showed that the AUC value of the multifactorial combined prediction model was 0.961(95%CI:0.931~0.992),indicating that the model has good discriminative ability.Bootstrap validation demonstrated that the deviation calibration curve of the model matched well with the ideal curve.Conclusion Severe neuropathy,lacrimal gland dysfunction,insulin de-ficiency,low disease awareness level,poor medication adherence,and high levels of IL-1β,IL-6,TNF-α,FPG,and HbA1c are inde-pendent risk factors for the occurrence of dry eye disease in T2DM patients with peripheral neuropathy.The constructed multifactorial combined prediction model has good discriminative ability and can effectively predict the risk of dry eye disease in these patients,which is of significant importance for clinical diagnosis and treatment.

Type 2 diabetes mellitusPeripheral neuropathyDry eye diseaseInfluencing factorsNomogramPrediction model

高峰、刘海军、郝晶、牛伟、刘雅妮、尤瑞、刘文舟

展开 >

宁夏回族自治区人民医院眼科,宁夏银川 750002

2型糖尿病 周围神经病变 干眼症 影响因素 列线图 预测模型

宁夏自然科学基金项目

2019AAC03174

2024

宁夏医学杂志
中华医学会宁夏分会

宁夏医学杂志

影响因子:0.706
ISSN:1001-5949
年,卷(期):2024.46(8)