首页|基于SVR和随机森林模型的动力煤高位发热量预测研究

基于SVR和随机森林模型的动力煤高位发热量预测研究

扫码查看
采用两种统计学习算法(支持向量回归和随机森林)构建了 5 种模型(LSVR、PSVR、RSVR、SSVR和RF),评估了它们在预测典型动力煤高位发热量与工业分析数据关系方面的表现。结果表明,RSVR和RF模型能够准确预测高位发热量,特别是在HHVd为26。00~28。00 MJ/kg和Vd为28%~34%内。RSVR和RF模型的平均百分比误差(MAPE)分别为0。97%和0。96%。选择了不同类型的动力煤验证模型的可用性和应用范围,通过与各类煤的绝对百分比误差比较,可以发现随机森林模型普遍表现出较好的适应性和稳定性。
Prediction of higher heating value of fuel coal based on SVR and random forest models
Five models(LSVR,PSVR,RSVR,SSVR,and RF)were constructed by using two statistical learning algorithms(Support Vector Regression and Random Forest),and their performance in predicting the relationship between the high level heat generation of typical power coals and the industrial analysis data was evaluated.The results showed that the RSVR and RF models were able to accurately predict the high-level heat generation,especially within HHVd of 26.00~28.00 MJ/kg and Vd of 28~34%.The mean percentage errors(MAPE)of the RSVR and RF models were 0.97%and 0.96%,respectively.Different types of power coals were selected to verify the usability and application range of the models,and by comparing the absolute percentage errors with various types of coals,it can be found that the Random Forest model generally shows better adaptability and stability.

higher heating value predictionmachine learningbituminous coalsupport vector regression(SVR)random forest

郭龙、郭文文

展开 >

浙江浙能富兴燃料有限公司,浙江 杭州 310023

浙江科技学院机械与能源工程学院,浙江 杭州 310023

高位发热量预测 机器学习 动力煤 支持向量回归(SVR) 随机森林

2024

能源工程
浙江省能源研究所 浙江省能源研究会

能源工程

影响因子:0.314
ISSN:1004-3950
年,卷(期):2024.44(1)
  • 25