首页|基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究

基于WPT-PCA-GMHMM的输气管道泄漏源特征识别研究

扫码查看
为了克服压力波动下输气管道泄漏信号变化幅度大导致孔径识别准确率低的问题,提出了一种基于WPT-PCA-GMHMM的泄漏源特征识别模型。开展了压力波动下管道泄漏的声发射检测实验,通过小波包变换(WPT)提取了不同工况下声发射信号的小波包能量谱,随后通过主成分分析(PCA)对频带能量进行去相关性与降维。最后将数据及标签分为训练集与测试集,采用高斯混合-隐马尔可夫模型(GMHMM)实现了对管道压力与泄漏孔径的分类识别。结果表明,所提出的模型整体准确率最高达到95。20%,泄漏孔径准确率达到 99。95%,显著泄漏识别准确率达到 100%,在充足样本及小样本的环境下相比BPNN、SVM均有优秀的表现。
Research on fault source identification of gas pipeline based on WPT-PCA-GMHMM
In order to overcome the problem of low aperture recognition accuracy caused by large amplitude change of leakage signal of gas pipeline under pressure fluctuation,a leakage source feature recognition model based on WPT-PCA-GMMMM is proposed.The acoustic emission detection experiment of pipeline leakage under pressure fluctuation was carried out,and the wavelet packet energy spectrum of acoustic emission signal under different working conditions was extracted by wavelet packet transformation(WPT).Then the frequency band energy was decorrelated and dimensionally reduced by principal component analysis(PCA).Finally,the data and labels were divided into training set and test set,and the Gaussian mixed-hidden Markov model(GMHMM)was used to realize the classification and identification of pipeline pressure and leakage aperture.The results show that the overall accuracy of the proposed model reaches 95.20%,the accuracy of leakage aperture reaches 99.95%,and the accuracy of notable leakage identification reaches 100%,which has excellent performance compared with BPNN and SVM in the environment of both sufficient samples and small samples.

Pipeline leakageAcoustics emissionWPTPCAGMHMM

喻可、张宏南、金建新、曾磊、林志明、金其文、吴迎春、吴学成

展开 >

浙江大学青山湖能源研究基地,浙江 杭州 311305

浙江大学宁波科创中心,浙江 宁波 315100

浙江浙能嘉华发电有限公司,浙江 嘉兴 314201

管道泄漏 声发射 小波包变换(WPT) 主成分分析(PCA) 高斯混合-隐马尔可夫模型(GMHMM)

宁波市"科技创新"重大专项(2025)

2018B10024

2024

能源工程
浙江省能源研究所 浙江省能源研究会

能源工程

影响因子:0.314
ISSN:1004-3950
年,卷(期):2024.44(2)
  • 16