首页|基于Observation Nudging高精度深远海风资源模拟方法研究

基于Observation Nudging高精度深远海风资源模拟方法研究

扫码查看
为提升深远海区域风资源评估的准确性,将Observation Nudging方法应用于中尺度气象模型WRF中,通过同化多个近海激光雷达数据来改进风速模拟效果。通过对比未同化的CTRL模型、常用的Grid Nudging方法(GN模型)和Observation Nudging方法(ON模型),系统评估了ON模型在风速模拟、风廓线精度及风能密度估算方面的优势。研究表明,ON模型显著提升了5%的风速模拟相关性,并降低了均方根误差和平均绝对误差。此外,ON模型在风力机关键运行高度(50m~150m)区域风廓线的模拟精度较高,并在风能密度评估中较CTRL模型误差降低了3%。尽管Observation Nudging能有效提升局地模拟精度,但对近海表面风廓线的物理约束能力有待改进。其次,GN模型在小尺度特征刻画上存在不足,因而不适合用于风资源的细化分析。总之,ON模型在缺乏观测的深远海区域具有较强的工程应用潜力,可为风电场合理规划提供有力支持。
A study of a high-precision deep-sea wind resource modelling method based on Observation Nudging
In order to improve the accuracy of wind resource assessment in the deep and distant sea region,the Observation Nudging method is applied to the mesoscale meteorological model WRF,and the wind speed simulation is improved by assimilating multiple offshore LiDAR data.By comparing the unassimilated CTRL model,the commonly used Grid Nudging method(GN model)and the Observation Nudging method(ON model),the advantages of the ON model in wind speed simulation,wind profile accuracy and wind energy density estimation are systematically evaluated.It is shown that the ON model significantly improves the wind speed simulation correlation by 5%and reduces the root mean square error and mean absolute error.In addition,the ON model has higher simulation accuracy of wind contours in the wind turbine critical operating height(50~150m)region and reduces the error by 3%compared to the CTRL model in wind energy density estimation.Although Observation Nudging can effectively improve the local simulation accuracy,the ability to physically constrain the offshore surface wind contours needs to be improved.Secondly,the GN model is deficient in small-scale feature portrayal,and thus is not suitable for the refined analysis of wind resources.In conclusion,the ON model has a strong potential for engineering application in the deep and distant sea region where observations are lacking,and can provide strong support for the rational planning of wind farms.

far-offshore wind resources assessmentWRF ModelObservation NudgingGrid Nudgingwind simulation

吴春雷、王尼娜、赵岩、黄伟、董雪、刘树洁

展开 >

中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122

浙江省深远海重点实验室,浙江 杭州 311122

中国气象局上海台风研究所,上海 200030

深远海风资源评估 WRF模式 ON模型 GN模型 风模拟

2024

能源工程
浙江省能源研究所 浙江省能源研究会

能源工程

影响因子:0.314
ISSN:1004-3950
年,卷(期):2024.44(6)