首页|深度学习在农业领域的研究与应用

深度学习在农业领域的研究与应用

Research and Application of Deep Learning in Agriculture

扫码查看
深度学习是目前人工智能领域最重要的技术之一,在学术领域和工程应用中掀起了研究高潮.鉴于深度学习在农业领域的应用潜力和重要性,通过对深度学习有关文献的研究,详细描述了深度学习的概念,结合典型深度神经网络的结构特征,对其特点、优缺点、变体及应用现状进行了综述;重点介绍了深度学习在语音识别、农业场景目标检测、农业图像语义分割领域的发展和应用;分析了深度学习在农业领域应用中存在问题和未来重点研究方向.
Deep learning is one of the most important technologies in field of artificial intelligence.Deep learning has set off a research climax in academic field and engineering application.In view of application potential and importance of deep learning in agricultural field,concept of deep learning was described in detail through study of deep learning literature,and its characteristics,advantages and disad-vantages,variants and application status were reviewed based on structural characteristics of typical deep neural networks.Development and application of deep learning in speech recognition,agricultural scene object detection and semantic segmentation in agricultural field were introduced.Current problems and future research directions of deep learning in agriculture were analyzed.

deep learningagricultural applicationsconvolutional neural networkrecursive neural networksmart agriculture

梁美静、毛克彪、郭中华、袁紫晋

展开 >

宁夏大学电子与电气工程学院,宁夏 银川 750021

中国农业科学院农业资源与农业区划研究所,北京 100081

深度学习 农业应用 卷积神经网络 递归神经网络 智慧农业

宁夏回族自治区科技创新团队柔性引进人才项目(2021)风云卫星应用先行计划

2021RXTDLX14FY-APP-2022.0205

2024

农业工程
北京卓众出版有限公司

农业工程

CSTPCD
影响因子:0.422
ISSN:2095-1795
年,卷(期):2024.14(1)
  • 44