首页|基于改进小波阈值-CEEMDAN算法的大黄鱼声信号降噪研究

基于改进小波阈值-CEEMDAN算法的大黄鱼声信号降噪研究

扫码查看
大黄鱼在繁殖期各阶段所发出的声音信号一般能够反映其生理和行为状态,然而在实际养殖环境中采集到的声音信号往往混杂多种噪声,需要对原始信号进行降噪预处理.提出了一种改进小波阈值-CEEMDAN的降噪算法,首先将原始信号分解为多个本征信号分量,然后使用改进的小波阈值函数对每个本征信号分量进行处理,最后将处理后的有效信号分量进行重构.开展大黄鱼发声信号降噪效果测试试验,结果表明,使用该研究提出的降噪算法后检测系统信噪比提高到 14.53 dB,均方根误差降低到 0.001 96 dB.相较于传统降噪算法,改进后的算法具有更好的降噪效果,更有利于分析和研究大黄鱼繁殖期间的发声行为.
Research on noise reduction of Larimichthys crocea vocal signals based on improved wavelet threshold-CEEMDAN method
Acoustic signals emitted by large yellow croaker during various stages of breeding period can generally reflect its physiologic-al and behavioral states.However,acoustic signals collected in actual aquaculture environment are often mixed with a variety of noises,so noise reduction pre-processing is required to be performed on raw signals.An improved wavelet threshold-CEEMDAN noise reduc-tion algorithm was proposed,in which original signal was first decomposed into multiple IMFs,then each IMF was processed using im-proved wavelet threshold function,and finally processed IMFs were reconstructed.Results showed that SNR of detection system was in-creased to 14.53 dB and the RMSE was reduced to 0.00196 dB after using noise reduction algorithm proposed.Compared with tradition-al noise reduction algorithms,improved algorithm has a better noise reduction effect,which was more conducive to analyzing and study-ing vocal behaviors during breeding period of large yellow croaker.

large yellow croakerCEEMDANwavelet thresholdingvocal signal processingreproductive monitoring

郑必聪、蔡卫明、孟靖斐、金婧

展开 >

江西理工大学电气与自动化学院,江西 赣州 341000

浙大宁波理工学院信号智能检测与生命行为感知研究所,智慧海洋牧场装备技术浙江省工程研究中心,浙江 宁波 315100

浙江理工大学信息科学与工程学院,浙江 杭州 310018

大黄鱼 CEEMDAN 小波阈值 声信号处理 繁殖状态监测

国家自然科学基金项目国家自然科学基金项目宁波市青年科技创新领军人才项目宁波市公益性计划项目

32073028317023932023QL0042023S217

2024

农业工程
北京卓众出版有限公司

农业工程

CSTPCD
影响因子:0.422
ISSN:2095-1795
年,卷(期):2024.14(9)
  • 9