首页|采用双重注意力特征金字塔网络检测群养生猪

采用双重注意力特征金字塔网络检测群养生猪

扫码查看
为解决复杂环境下,猪只粘连和猪栏遮挡等因素给生猪个体多目标实例检测带来的困难,该研究以群养猪圈场景下8栏(日龄20~105 d)共计45头生猪为研究对象,以视频为数据源,采用平视视角、镜头位置不固定的数据采集方式,共获得标注图像3834张,并将其划分为训练集2490张、验证集480张、测试集864张.引入一种融合通道注意力(Channel Attention Unit,CAU)与空间注意力(Position Attention Unit,PAU)的双重注意力单元(Dual Attention Unit,DAU),并将DAU用于特征金字塔网络(Feature Pyramid Network,FPN)结构中,研究基于两大骨干网络ResNet50、ResNet101与4个任务网络Mask R-CNN、Cascade Mask R-CNN、MS R-CNN及HTC(Hybrid Task Cascade)交叉结合模型对群养生猪实例检测性能.结果表明:与CBAM、BAM、SCSE等注意力模块相比,HTC-R101-DAU比HTC-R101-CBAM在IOU阈值为0.5、0.75、0.5~0.95(所有目标)、0.5~0.95(大目标)条件下的4种AP(Average Precision)指标分别提升1.7%、1.7%、2.1%与1.8%;单独加入CAU与PAU以分别探究通道与空间注意力单元对任务网络检测性能影响,试验结果表明,DAU与CAU及PAU相比性能更佳,且加入特定串联数量的PAU效果优于CAU;为获取更为丰富的上下文信息,分别串联1~4个PAU单元以构建不同空间注意力模块,试验结果表明,随着串联PAU单元数量的增加,相同任务网络其预测AP指标值先增加后减小.综合分析,HTC-R101-DAU模型可更为精确、有效地对不同场景生猪进行实例检测,可为后续生猪个体深度研究奠定基础.
Instance detection of group breeding pigs using a pyramid network with dual attention feature

胡志伟、杨华、娄甜田

展开 >

山西农业大学信息科学与工程学院,太谷 030801

山西大学计算机与信息技术学院(大数据学院),太原 030006

山西农业大学农业经济管理学院,太谷 030801

图像处理 目标检测 算法 特征金字塔 通道注意力 空间注意力

国家自然科学基金山西农业大学青年科技创新基金

316715712019027

2021

农业工程学报
中国农业工程学会

农业工程学报

CSTPCDCSCD北大核心
影响因子:2.529
ISSN:1002-6819
年,卷(期):2021.37(5)
  • 12
  • 14