首页|基于卡尔曼滤波的自动引导车串级轨迹跟踪控制

基于卡尔曼滤波的自动引导车串级轨迹跟踪控制

扫码查看
针对三轮AGV具有不完整约束特性的运动学模型,提出一种串级轨迹跟踪算法,把模型转换为两个非线性时变系统,通过运用串级控制及状态微分反馈控制实现系统全局渐进稳定,最后再利用卡尔曼滤波算法对带有噪声干扰的状态进行估计,提高AGV自定位精度,从而进一步提高该控制器的输出精度.该控制策略具有一般性,对所有AGV及其他轮式移动机器人的运动学模型都适用,且设计方法简单、鲁棒性强.计算机仿真结果表明,该系统能在较短时间内实现全局渐进稳定,验证了该控制策略的有效性.
Cascade Tracking Control for AGV Based on Kalman Filter
Aimed at the trajectory tracking control problem for the kinematics model of three-wheeled AGV with nonholonomic constraint, a cascade tracking control algorithm was proposed. The algorithm broke the system down into two nonlinear time-varying systems and finally realized the global asymptotic stability of the control system using cascade control method and state derivative feedback control method. Furthermore, the noise problem of state estimation was solved successfully by using a Kalman filter, which improved the localization precision and enhanced the control effectiveness. The designed control algorithm is of strong robustness and generality for kinematics model of other wheeled mobile robots. Computer simulation results showed that the system can be stable in a short time which verifies its effectiveness.

AGVCascade controlKalman filterTrajectory tracking

尹晓红、赵韩、吴焱明、熊丹

展开 >

合肥工业大学机械与汽车工程学院,合肥,230009

自动引导车 串级控制 卡尔曼滤波 轨迹跟踪

国家科技支撑计划国家高技术研究发展计划(863计划)

20060360031312006AA11A109

2010

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCDCSCD北大核心EI
影响因子:1.904
ISSN:1000-1298
年,卷(期):2010.41(2)
  • 9
  • 3