首页|基于改进YOLO v5的皮蛋裂纹在线检测方法

基于改进YOLO v5的皮蛋裂纹在线检测方法

扫码查看
为了解决裂纹皮蛋分选中存在的效率低、人力成本高等问题,提出了一种基于改进YOLO v5的皮蛋裂纹在线检测方法.使用EfficientViT网络替换主干特征提取网络,并采用迁移学习对网络进行训练,分别得到YOLO v5n_EfficientViTbO 和 YOLO v5s_EfficientViTb1 两个模型.YOLO v5n_EfficientViTb0 为轻量化模型,相较于改进前参数量减少14.8%,浮点数计算量减少26.8%;YOLO v5s_EfficientViTb1为高精度检测模型,平均精度均值为87.8%.采用GradCAM++对模型可视化分析,得出改进模型减少了对背景区域的关注度,证明了改进模型的有效性.设计了视频帧的目标框匹配算法,实现了视频中皮蛋的目标追踪,依据皮蛋的检测序列实现了对皮蛋的定位和裂纹与否的判别.轻量化模型的判别准确率为92.0%,高精度模型的判别准确率为94.3%.研究结果表明,改进得到的轻量化模型为运算能力较差的皮蛋裂纹在线检测装备提供了解决方案,改进得到的高精度模型为生产要求更高的皮蛋裂纹在线检测装备提供了技术支持.
Crack Detection Method for Preserved Eggs Based on Improved YOLO v5 for Online Inspection
With the aim to address the issues of low efficiency and high labor costs in crack detection and sorting of preserved eggs,a method for online crack detection based on an improved version of YOLO v5 was proposed.The backbone feature extraction network was replaced with the EfficientViT network,and the network was trained by using transfer learning,resulting in two models:YOLO v5n_EfficientViTb0 and YOLO v5s_EfficientViTb1.YOLO v5n_EfficientViTb0 served as a lightweight model,reducing the parameter size by 14.8%and the floating point operations by 26.8%compared with that of the original model.YOLO v5s_EfficientViTb1,on the other hand,was a high-precision detection model with an average precision mean of 87.8%.Through the utilization of GradCAM++for model visualization and analysis,it was discovered that the improved model demonstrated a decreased focus on the background region.This finding served as evidence supporting the effectiveness of the enhancements implemented in the model.Moreover,a target box matching algorithm was designed for video frames to enable object tracking of preserved eggs in videos.Based on the detection sequence of preserved eggs,the algorithm achieved localization of the eggs and discrimination between cracked and intact ones.The lightweight model achieved a discrimination accuracy of 92.0%,while the high-precision model achieved an accuracy of 94.3%.These research findings indicated that the improved lightweight model provided a solution for preserved egg crack detection equipment with lower computational capabilities,while the improved high-precision model offered technical support for preserved egg crack detection equipment with higher production requirements.

preserved eggcrack detectionYOLO v5EfficientViTobject trackingGradCAM++

汤文权、陈灼廷、王东桥、范维、王巧华

展开 >

华中农业大学工学院,武汉 430070

农业农村部长江中下游农业装备重点实验室,武汉 430070

国家蛋品加工技术研发分中心,武汉 430070

皮蛋 裂纹检测 YOLO v5 EfficientViT 目标跟踪 GradCAM++

国家自然科学基金面上项目湖北省重点研发计划项目

320723022023BBB036

2024

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCD北大核心
影响因子:1.904
ISSN:1000-1298
年,卷(期):2024.55(2)
  • 29