首页|茶叶生产装备自动化与智能化技术研究进展与展望

茶叶生产装备自动化与智能化技术研究进展与展望

扫码查看
茶产业是我国传统特色优势产业,大数据、物联网、云计算等新一代信息技术与农业的融合促进了茶产业向智能化转型与升级,在茶叶全产业链赋能增效中发挥重要作用.本文在概述了茶产业智能化技术体系的基础上,围绕种植、加工、检测和销售等4 方面总结了国内外信息技术在茶产业智能化中应用的研究成果,分析了茶产业实现智能化的关键技术.最后对茶产业智能化未来发展方向进行展望,建议增强茶产业信息技术基础设施建设、加强人机协作智能茶机设备研发、重视茶叶种植加工大模型开发、提升大数据分析助力茶叶销售能力,为更好利用信息技术进行茶产业升级奠定基础.
Tea Production Equipment Automation and Intelligent Technology Research Progress and Prospects
Tea industry is a traditional characteristic advantageous industry in China,and the integration of new generation information technology and agriculture,such as big data,Internet of things,cloud computing,etc.,promotes the transformation and upgrading of the tea industry to intelligence,and plays an important role in empowering and increasing the efficiency of the whole tea industry chain.On the basis of an overview of the tea industry intelligent technology system,the domestic and international research was summarized based on the application of information technology in the tea industry intelligence around the four aspects of planting,processing,testing and sales,and the key technologies to achieve intelligence in the tea industry was analyzed.Finally,it was looked forward to the future development direction of tea industry intelligence,and suggested to enhance the tea industry information technology infrastructure construction,strengthen the research and development of intelligent tea machine equipment for human-machine collaboration,pay attention to the development of tea planting and processing models,and enhance the ability of big data analysis to help tea sales,in order to lay the foundation for better use of information technology for tea industry upgrading.

tea industrytea automatic processingtea intelligent testinginformation technology

高一聪、许晨、林琼、王淑花、魏喆

展开 >

浙江大学流体动力基础件与机电系统全国重点实验室,杭州 310058

浙江工业大学机械工程学院,杭州 310014

沈阳工业大学机械工程学院,沈阳 110870

茶产业 茶叶自动化加工 茶叶智能检测 信息技术

国家自然科学基金项目浙江省教育厅科研项目浙江工业大学研究生教改项目国家资助博士后研究人员计划项目湖州市自然科学基金项目

52375272Y2022495472022316GZB202303392021YZ07

2024

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCD北大核心
影响因子:1.904
ISSN:1000-1298
年,卷(期):2024.55(7)
  • 55