首页|基于MobileNetV2-CBAM的机收场景下冬小麦成熟期在线分类识别方法

基于MobileNetV2-CBAM的机收场景下冬小麦成熟期在线分类识别方法

扫码查看
小麦成熟期在线精准分类识别将为实现联合收获机的智能化调控提供有效支撑.本文提出一种基于车载相机和深度学习结合的冬小麦成熟期在线分类方法.以车载相机拍摄的实时图像为主,无人机拍摄的图像为辅,构建小麦乳熟-蜡熟初期、蜡熟后期-完熟初期、完熟后期-枯熟期和已收割区数据集(4 400幅).针对机收环境复杂、小麦图像模糊等问题,以MobileNetV2为基础网络结构,在特征提取后添加卷积注意力模块(Convolutional block attention module,CBAM)提升对图像特征的自适应提取能力.为了评估模型可信度,采用可视化技术观察模型对图像的关注区域.以不同分类模型为对比,对建立的MobileNetV2-CBAM模型性能进行评价.试验结果表明,MobileNetV2-CBAM模型在测试集中的分类识别准确率达到99.5%,相比于MobileNetV2高0.7个百分点;与ResNet和Swin Transformer模型相比,在分类精度未发生明显差异的前提下,MobileNetV2-CBAM模型内存占用量(8.73 MB)仅为其1/8和1/11.为了验证模型实际应用效果,田间试验结果表明,在车速4~6 km/h条件下,每隔1s识别1幅图像,成熟期分类识别精度为96.8%,满足机收场景下的小麦成熟期在线分类准确性和实时性要求.
Online Classification and Identification Method of Winter Wheat Maturity under Mechanical Harvesting Scenario Based on MobileNetV2-CBAM
The precise online classification and identification of wheat maturity stages will offer valuable support for the intelligent control of combine harvesters.An online classification method was proposed for wheat maturity stages that combined vehicle-mounted cameras with deep learning techniques.By using real-time images captured by vehicle-mounted cameras,along with additional images from drones,a dataset of 4 400 images was constructed,which included various wheat maturity stages,including milk ripening-early wax ripening stage,late wax ripening-early full ripening stage,late full ripening-dry ripening stage and harvested area.To address challenges such as complex harvesting environments and blurry wheat images,the MobileNetV2 was employed as the foundational network structure.Additionally,a convolutional block attention module(CBAM)was incorporated after feature extraction to enhance the adaptive capability of image feature extraction.To assess the credibility of the model,visualization techniques were employed to examine the areas of interest identified by the model in the images.The performance of the MobileNetV2-CBAM model was compared with other classification models.Results indicated that the MobileNetV2-CBAM model achieved a classification accuracy of 99.5% on the test set,which was 0.7 percentage points higher than that of MobileNetV2.When compared with ResNet and Swin Transformer models,the MobileNetV2-CBAM model demonstrated similar classification accuracy but with a significantly smaller model memory usage(8.73 MB)—only 1/8 and 1/11 of the memory usage of ResNet and Swin Transformer,respectively.Field experiments further validated the model's practical application:at vehicle speeds of 4 km/h to 6 km/h,the system recognized an image every second with a maturity classification accuracy of 96.8%,meeting the accuracy and real-time requirements for online wheat maturity classification in mechanical harvesting scenarios.

wheatmaturityMobileNetV2-CBAMdeep learningvehicle-mounted camera

王发明、倪昕东、张旗、陶伟、陈度、毛旭

展开 >

中国农业大学工学院,北京 100083

博创联动科技股份有限公司,北京 100083

智能农业动力装备全国重点实验室,北京 100083

小麦 成熟期 MobileNetV2-CBAM 深度学习 车载相机

2024

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCD北大核心
影响因子:1.904
ISSN:1000-1298
年,卷(期):2024.55(z1)