首页|基于YOLO v8n改进的小麦病害检测系统

基于YOLO v8n改进的小麦病害检测系统

扫码查看
针对现有小麦病害检测算法精度低、处理速度缓慢、易受背景环境干扰、难以检测目标病害等问题,结合先进的智能手机硬件、便捷的微信小程序以及高效的云服务平台,设计一个基于云架构的小麦病害检测系统.系统主要包括云服务器模块和微信小程序模块,云服务器端主要用于图像接收和模型处理;使用CSS和Java Script语言开发微信小程序,用于实现数据上传、信息反馈与信息显示.为保证模型在云服务器部署的可行性,提出一种基于YOLO v8n改进的小麦病害检测模型(C2f-Faster-Slim-Neck-YOLO v8n,CS-YOLO).该模型结合 FasterNet 轻量化优点,使用 FasterNet 中的 FasterNet Block替换C2f中Bottleneck模块,降低模型内存占用量的同时,提高模型特征融合能力和检测精度.在颈部网络使用GSConv并采用Slim-Neck设计范式中的VoV-GSCSP模块对YOLO v8n的Neck进行改进,降低模型计算量的同时提高模型检测精度.试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型浮点运算量及模型内存占用量相比YOLO v8n基线模型分别降低24.4%和17.5%,同时平均精度均值相较于原模型提高1.2个百分点,且优于YOLOv3-tiny、YOLOv5、YOLO v6、YOLO v7和YOLOv7-tiny算法.最后将轻量化检测模型CS-YOLO部署到云服务器上,将检测功能转化为API接口,小程序利用请求调用其接口调用服务器连接,服务器收到请求后,将数据传递给部署在云服务器上的模型,用户通过使用微信小程序调用检测模型对病害图像进行类型识别和病害位置检测,平均精度均值为89.2%,可为小麦病害识别类型和检测病害位置提供技术支持.
Improved Wheat Disease Detection System Based on YOLO v8n
In order to solve the problems of low accuracy,slow processing speed,easy to be disturbed by the background environment and difficult to detect target diseases of the existing wheat disease detection algorithms,a wheat disease detection system based on cloud architecture was designed by combining advanced smart phone hardware,convenient WeChat mini program application and efficient cloud service platform.The system mainly included cloud server module and WeChat mini program module.The cloud server side was mainly used for image receiving and model processing.Using CSS and Java Script language to develop WeChat mini program for data upload,information feedback and information display.In order to ensure the feasibility of the model deployment in cloud server,an improved wheat disease detection model based on YOLO v8n(C2f-Faster-Slim-Neck-YOLO v8n,CS-YOLO)was proposed.Combining with FasterNet's advantages of lightweight,this model proposed to replace C2f Bottleneck module with FasterNet Block,which reduced the model size and improved the model's feature fusion ability and detection accuracy.In the Neck network,GSConv and VoV-GSCSP module in Slim-Neck design paradigm were used to improve the neck of YOLO v8n,reducing the calculation amount of the model and improving the detection accuracy of the model.The test results showed that for the wheat disease data set collected in the field environment,the floating point computation and model memory occupation of the improved model were reduced by 24.4% and 17.5% respectively compared with the baseline model of YOLO v8n,and the average accuracy was increased by 1.2 percentage points compared with the original model.It was superior to YOLO v3-tiny,YOLO v5,YOLO v6,YOLO v7,and YOLO v7-tiny algorithms.Finally,the lightweight detection model CS-YOLO was deployed on the cloud server and the detection function was transformed into an API interface.The applet called the server connection by requesting its interface.After receiving the request,the server passed the data to the model deployed on the cloud server.By using the WeChat mini program to invoke the detection model for disease image type recognition and disease location detection,the mean average precision was 89.2%,which can provide technical support for wheat disease type recognition and disease location detection.

wheatdisease detectiondeep learningYOLO v8 modelWeChat mini program

刘梦姝、张春琪、晁金阳、唐彬、张鹏磊、李民赞、孙红

展开 >

中国农业大学烟台研究院,烟台 264670

中国农业大学智慧农业系统集成研究教育部重点实验室,北京 100083

中国农业大学农业农村部农业信息获取技术重点实验室,北京 100083

小麦 病害检测 深度学习 YOLO v8模型 微信小程序

2024

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCD北大核心
影响因子:1.904
ISSN:1000-1298
年,卷(期):2024.55(z1)