首页|基于TSSA-PID的果园喷雾机风幕风速调控系统研究

基于TSSA-PID的果园喷雾机风幕风速调控系统研究

扫码查看
为降低果园风送植保机械飘失量并提高冠层内部沉积量和均匀性,在果园风送式防飘喷雾机基础上提出了一种基于改进麻雀搜索算法(Tent sparrow search algorithm,TSSA)优化PID参数的调控系统.该系统通过在麻雀搜索算法中引入Tent混沌映射、随机跟随策略和逐维透镜成像反向学习,提高对PID参数的寻优能力,避免PID系统陷入局部,提高风幕风速自动化调控水平,进而降低雾滴飘失量并提高冠层沉积量和均匀性.仿真试验结果表明,该算法与对比算法相比,响应时间降低45.77%,超调量降低13.22%,具有更优的自动调节能力.田间试验结果表明,调节风幕风速平均误差和最长响应时间分别为2.11%和0.8 s,相对于其他算法分别降低24.1%和20%以上.相比于果园风送式防飘喷雾机,应用该系统后,平均雾滴飘移、地面流失量和雾滴沉积量分布变异系数分别减少13%、16.13%和29.62%,平均冠层沉积量提升11.97%.研究成果为解决果园农药飘失和冠层内部沉积问题提供了新的技术方案.
Wind Curtain Speed Control System of Orchard Sprayer Based on TSSA-PID
Orchard wind-sending plant protection machinery has low real-time performance,large drift,and poor environmental adaptability.To reduce the drift loss of orchard air-assisted plant protection machinery and improve the deposition amount and uniformity within the canopy,a control system based on the tent sparrow search algorithm(TSSA)to optimize PID(proportional-integral-derivative)parameters was proposed on the basis of the orchard air-assisted anti-drift sprayer.This system enhanced the optimization ability for PID parameters by introducing tent chaotic mapping,random following strategy,and dimension-by-dimension lens imaging reverse learning into the sparrow search algorithm,avoiding the PID system from falling into local minima,and improving the level of automation in wind curtain speed regulation.Consequently,it reduced the drift loss of droplets and enhanced the canopy deposition amount and uniformity.Simulation test results showed that compared with the contrast algorithms,the response time was reduced by 45.77%,and the overshoot was reduced by 13.22%,demonstrating superior automatic regulation capability.Actual test results indicated that the average error and the longest response time for adjusting the wind curtain speed were 2.11%and 0.8 s,respectively,which were 24.1%and 20%lower than those of other algorithms.Compared with the orchard air-assisted anti-drift sprayer,after applying this system,the drift of droplets,ground loss,and the coefficient of variation of droplet deposition distribution were reduced by 13%,16.13%,and 29.62%,respectively,while the canopy deposition amount was increased by 11.97%.This research achievement provided a technical solution for addressing the problems of pesticide drift loss and canopy internal deposition in orchards.

fog droplet anti-driftsparrow search algorithmPID controlorchard plant protection

姜红花、胡芳超、白鹏、刘理民、薛惠峰、毛文华、杜宜龙、杨祥海

展开 >

山东农业大学信息科学与工程学院,泰安 271018

山东科技大学泰安校区教务部,泰安 271018

山东农业工程学院机械电子工程学院,济南 250100

中国农业机械化科学研究院集团有限公司,北京 100083

蓬莱国宾葡萄酒庄有限公司,烟台 265600

展开 >

雾滴防飘 麻雀搜索算法 PID控制 果园植保

2024

农业机械学报
中国农业机械学会 中国农业机械化科学研究院

农业机械学报

CSTPCD北大核心
影响因子:1.904
ISSN:1000-1298
年,卷(期):2024.55(z2)