首页|基于强化学习的核电数字孪生模型自动化同步研究

基于强化学习的核电数字孪生模型自动化同步研究

扫码查看
核电运行数字孪生系统与机组的高效同步是电厂运行优化的基础,是核电安全的重要保障.以核电蒸汽系统数字孪生模型为研究对象,提出了一种基于孪生延迟深度确定性策略梯度的自适应智能优化算法(TD3PSO),通过构建动作网络与动作价值网络,利用神经网络动态生成基本粒子群优化算法运行过程中所需要的超参数,实现超参数的自我探索,降低人工对算法的干预,解决基本粒子群优化算法容易陷入局部最优的问题.实验表明,TD3PSO算法优于基本粒子群优化算法,相比于人工调试的结果,在优化精度上提高了 93.39%,自动化同步效果显著.
AUTOMATED SYNCHRONOUS RESEARCH ON NUCLEAR POWER DIGITAL TWIN MODEL BASED ON REINFORCEMENT LEARNING
The efficient synchronization of the digital twin system and the unit of nuclear power operation is the basis for the optimiza-tion of power plant operation and an important guarantee for nuclear power safety.Taking the digital twin model of nuclear steam system as the research object,this paper proposes an adaptive intelligent optimization algorithm based on the deep deterministic policy gradient of twin delay(TD3PSO).By constructing the action network and action value network,the neural network is used to dynamically gen-erate the hyperparameters required during the operation of the elementary particle swarm optimization algorithm,so as to realize the self-exploration of the hyperparameters,reduce the manual intervention in the algorithm,and solve the problem that the elementary par-ticle swarm optimization algorithm is easy to fall into local optimum.Experiments show that the TD3PSO algorithm is superior to the el-ementary particle swarm optimization algorithm,and compared with the results of manual debugging,the optimization accuracy is im-proved by 93.39%,and the automatic synchronization effect is remarkable.

digital twinsautomated synchronizationadaptivetwin delay deep deterministic policy gradientintelligent optimization

刘浩、肖云龙、肖焱山、曾祥云、郑胜

展开 >

三峡大学理学院 湖北 宜昌 443002

中核武汉核电运行技术股份有限公司 湖北 武汉 430070

数字孪生 自动化同步 自适应 孪生延迟深度确定性策略梯度 智能优化

国家自然科学基金

12203029

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(2)
  • 13