首页|基于多变量LSTM模型的黄河流域气象干旱预测研究

基于多变量LSTM模型的黄河流域气象干旱预测研究

扫码查看
干旱是对人类社会发展影响最严重的自然灾害之一,气象干旱预测是干旱研究中的重要方向.为提高气象干旱的预测精度,将多变量方法应用到长短期记忆模型(Long short-term memory,LSTM)预测黄河流域标准化气象干旱指数(Standardized precipitation evapotranspiration index,SPEI)的过程中,并和单变量 LSTM 模型的结果进行对比.使用均方根误差、平均绝对误差、纳什效率指数作为评价指标.结果显示,在对黄河流域临夏站、陶乐站、铜川站各自 5 种时间尺度SPEI(1、3、6、9 和 12 个月)的预测中,多变量LSTM 预测结果的 3 种评价指标值均明显优于单变量 LSTM 预测结果;可视化结果也显示多变量 LSTM 方法的预测曲线更接近观测值曲线.研究证明了多变量LSTM 模型对于提高黄河流域气象干旱指数预测精度的有效性与适用性.
STUDY ON METEOROLOGICAL DROUGHT FORECASTING IN THE YELLOW RIVER BASIN BASED ON MULTIVARIATE LSTM MODEL
Drought is one of the natural disasters with the most serious impact on human social development,and meteorological drought forecasting is an important direction of drought research.To improve the forecasting accuracy of meteorological drought index,a multivariate approach was applied to the process of forecasting the standardized precipitation evapotranspiration index(SPEI)in the Yellow River Basin by the long short-term memory(LSTM)model and compared with the results of the univariate LSTM model.Root mean square error,mean absolute error,and Nash efficiency index were used as evaluation indicators.The results show that in the forecasting of SPEI-1,SPEI-3,SPEI-6,SPEI-9,and SPEI-12 at Linxia,Taole,and Tongchuan stations in the Yellow River Basin,the values of the three evaluation indicators of the multivariate LSTM forecasting results are clearly better than those of the univariate LSTM forecasting results;and the visualization results also show that the forecasting curves of the multivariate LSTM method are closer to the observed value curves.The study proves the effectiveness and applicability of the multivariate LSTM model for improving the forecast accuracy of the meteorological drought index in the Yellow River Basin.

Yellow River Basinmeteorological droughtmultivariate forecastingLSTMstandardized precipitation evapotranspiration index

张恒斌、许德合、付景保

展开 >

华北水利水电大学测绘与地理信息学院 河南 郑州 450046

河南工程学院南水北调与黄河流域生态环境研究中心 河南 郑州 451191

黄河流域 气象干旱 多变量预测 LSTM模型 标准化气象干旱指数

国家自然科学基金河南省科技重大专项河南省科技重大专项

42377490221100320200222102320021

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(2)
  • 19