首页|基于多尺度transformer的伪造人脸检测方法

基于多尺度transformer的伪造人脸检测方法

扫码查看
考虑到目前大多数伪造人脸分类方法存在分类精度低、泛化能力差的问题,提出一种结合多尺度 transform-er和卷积块注意力模块的伪造人脸分类方法.多尺度 transformer用来学习卷积层所提取特征图的高级语义特征,卷积块注意力模块用来增强此高级语义特征,使其更具有区分性,使用增强后的特征来进行分类.实验结果表明,该方法可以显著提高伪造人脸分类的准确性和泛化能力.
FAKE FACE DETECTION METHOD BASED ON MULTI-SCALE TRANSFORMER
Considering the problems of low classification accuracy and poor generalization ability in most current fake face classification methods,a fake face classification method combining multi-scale transformer and convolutional block attention module is proposed.The multi-scale transformer is used to learn the high-level semantic features of the feature map extracted by the convolutional layer,and the convolutional block attention module is used to enhance this high-level semantic feature to make it more discriminative,and use the en-hanced features for classification.Experimental results show that the method can significantly improve the accuracy and generalization ability of fake face classification.

multi-scale transformerconvolutional block attention modulefake face classificationhigh-level semantic features

黄继胜

展开 >

安徽理工大学计算机科学与工程学院 安徽 淮南 232001

多尺度transformer 卷积块注意力模块 伪造人脸分类 高级语义特征

安徽省自然科学基金

2008085MF220

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(2)
  • 15