针对传统推荐系统中使用离散评分未能合理表达用户偏好的问题,将遗传算法引入优化特征加权模糊 C均值,通过梯形模糊聚合相似目标用户,提出基于遗传算法的优化加权模糊 C 均值聚类融合梯形模糊数的协同过滤模型.通过遗传算法进行增强初始聚类中心,利用优化加权模糊 C 均值聚类融合梯形模糊数,分析类内与类间属性特征关系,实现用户精细划分,合理过滤推荐.在两组数据集中以 MAE 和 RMSE 作为评估指标进行实验,实验结果表明,所提算法在与其余 6 种算法对比中分类误差更低,对用户意愿识别更加清晰.
COLLABORATIVE FILTERING HYBRID RECOMMENDATION ALGORITHM INCORPORATING GAIFWFCM AND TFNS
In response to the issue of traditional recommendation systems' inability to effectively capture user preferences using discrete ratings,this study introduces a genetic algorithm to optimize feature-weighted fuzzy C-means.By employing trapezoidal fuzzy aggrega-tion to cluster similar target users,a collaborative filtering model based on the genetic algorithm optimized weighted fuzzy C-means clus-tering and trapezoidal fuzzy numbers is proposed.The genetic algorithm enhances initial clustering centers and utilizes weighted fuzzy C-means clustering and trapezoidal fuzzy numbers for fusing intra-class and inter-class attribute features,enabling fine-grained user seg-mentation and rational recommendation filtering.Experimental evaluations on two datasets utilizing MAE and RMSE as evaluation met-rics demonstrate that the proposed algorithm exhibits lower classification errors compared to six other algorithms while providing clearer identification of user preferences.