首页|基于GAIFWFCM和TFNs的协同过滤算法

基于GAIFWFCM和TFNs的协同过滤算法

扫码查看
针对传统推荐系统中使用离散评分未能合理表达用户偏好的问题,将遗传算法引入优化特征加权模糊 C均值,通过梯形模糊聚合相似目标用户,提出基于遗传算法的优化加权模糊 C 均值聚类融合梯形模糊数的协同过滤模型.通过遗传算法进行增强初始聚类中心,利用优化加权模糊 C 均值聚类融合梯形模糊数,分析类内与类间属性特征关系,实现用户精细划分,合理过滤推荐.在两组数据集中以 MAE 和 RMSE 作为评估指标进行实验,实验结果表明,所提算法在与其余 6 种算法对比中分类误差更低,对用户意愿识别更加清晰.
COLLABORATIVE FILTERING HYBRID RECOMMENDATION ALGORITHM INCORPORATING GAIFWFCM AND TFNS
In response to the issue of traditional recommendation systems' inability to effectively capture user preferences using discrete ratings,this study introduces a genetic algorithm to optimize feature-weighted fuzzy C-means.By employing trapezoidal fuzzy aggrega-tion to cluster similar target users,a collaborative filtering model based on the genetic algorithm optimized weighted fuzzy C-means clus-tering and trapezoidal fuzzy numbers is proposed.The genetic algorithm enhances initial clustering centers and utilizes weighted fuzzy C-means clustering and trapezoidal fuzzy numbers for fusing intra-class and inter-class attribute features,enabling fine-grained user seg-mentation and rational recommendation filtering.Experimental evaluations on two datasets utilizing MAE and RMSE as evaluation met-rics demonstrate that the proposed algorithm exhibits lower classification errors compared to six other algorithms while providing clearer identification of user preferences.

collaborative filteringtrapezoidal fuzzy numberfuzzy C-meansgenetic algorithmfeature weighting

金玉、徐新卫、陶飞、韩业、陈荣凯

展开 >

安徽工业大学管理科学与工程学院 安徽 马鞍山 243032

安徽工业大学工程研究院 安徽 马鞍山 243032

协同过滤 梯形模糊数 模糊C均值 遗传算法 特征加权

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(4)