首页|一种求解优化路径问题的改进人工势场法

一种求解优化路径问题的改进人工势场法

扫码查看
随着智能交通系统的快速发展,自主导航路径规划技术变得尤为关键.无人快递车作为新兴的技术手段,其自主导航系统的设计与实现是实现高效、低成本物流配送的关键.然而,传统人工势场法(Artificial Potential Field,APF)在路径规划中存在目标不可达和易陷入局部极小值的问题,限制了其在无人快递车导航系统中的应用.为解决这一问题,本文提出了一种改进的人工势场法,通过引入随机化算法思想,优化斥力场模型,增强了无人快递车在复杂环境中的避障能力和路径搜索效率.改进后的算法不仅提高了路径规划的全局优化性能,还增强了算法的鲁棒性,使无人快递车能够在面对动态环境时,快速找到安全、高效的配送路径.通过仿真实验,验证了所提方法在减少节点扩展、缩短规划时间以及提高路径平滑度方面的有效性.
AN IMPROVED ARTIFICIAL POTENTIAL FIELD METHOD FOR SOLVING OPTIMAL PATH PROBLEMS
With the rapid development of intelligent transportation systems,autonomous navigation path planning technology has become increasingly critical.As a novel technological approach,the design and implementation of an autonomous navigation system for unmanned delivery vehicles are key to achieving efficient and cost-effective logistics delivery.However,the traditional Artificial Poten-tial Field(APF)method encounters issues with unreachable goals and a tendency to fall into local minima during path planning,which limits its application in unmanned delivery vehicle navigation systems.To address these issues,this paper proposes an improved artifi-cial potential field method that enhances the repulsive field model by introducing the concept of randomized algorithms,thereby enhan-cing the obstacle avoidance capabilities and path search efficiency of unmanned delivery vehicles in complex environments.The im-proved algorithm not only enhances the global optimization performance of path planning but also strengthens the robustness of the algo-rithm,enabling unmanned delivery vehicles to quickly find safe and efficient delivery paths in response to dynamically changing envi-ronments.Simulation experiments have confirmed the effectiveness of the proposed method in reducing node expansion,shortening planning time,and improving path smoothness.

unmanned delivery vehiclesintelligent logisticspath planningautonomous navigation

张雨辰、周民、马思豪

展开 >

南阳理工学院计算机与软件学院 河南 南阳 473004

无人快递车 智能物流 路径规划 自主导航

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(4)