首页|基于YOLOv5s算法在行人车辆图像检测方面的改进和研究

基于YOLOv5s算法在行人车辆图像检测方面的改进和研究

扫码查看
针对城市交通环境复杂,行人和车辆检测结果存在漏检、误检、精度不高的问题,提出一种基于 YOLOv5s的改进模型.改进模型采用 EIoU损失函数,并引入了 FocalEIoU 损失函数,最后通过选用 PASCAL VOC 数据集来检验改进算法的效果.最终实验结果表明,改进后的YOLOv5s算法mAP 提升 4%左右,在检测精度上也有所提高,验证了本次研究的有效性.
IMPROVEMENT AND RESEARCH ON PEDESTRIAN AND VEHICLE IMAGE DETECTION BASED ON YOLOV5S ALGORITHM
An improved YOLOv5s model is proposed to address the complex urban traffic environment,as well as the issues of missed detection,false detection,and low accuracy in pedestrian and vehicle detection results.The improved model adopts the EIoU loss func-tion and introduces the FocalEIoU loss function.Finally,the effectiveness of the improved algorithm is tested by selecting the PASCAL VOC dataset.The final experimental results show that the improved YOLOv5s algorithm improves mAP by about 4%and also improves detection accuracy,verifying the effectiveness of this study.

YOLOv5simage processingobject detectionpedestrian and vehicle detection

朱培瑾、刘平、马学文

展开 >

南阳理工学院计算机与软件学院 河南 南阳 473004

YOLOv5s 图像处理 目标检测 行人车辆检测

2024

南阳理工学院学报
南阳理工学院

南阳理工学院学报

CHSSCD
影响因子:0.178
ISSN:1674-5132
年,卷(期):2024.16(4)