首页|人工神经网络在大豆食心虫虫食率预测中的应用

人工神经网络在大豆食心虫虫食率预测中的应用

扫码查看
大豆食心虫是黑龙江大豆的主要害虫之一,虫食率可以作为大豆食心虫发生程度的预测指标,虫食率受越冬基数和气象条件等多种因素的影响,是一个复杂的非线性非正态系统.根据人工神经网络建模的基本原理,以黑龙江省双城市的数据建立了神经网络预测模型,模型的回测与预测精度都比较高,可以作为大豆食心虫虫食率预测的一种新方法.
Application of the Artificial Neural Network to Forecast the Moth-eaten Ratio of Leguminivora Glycinivorella Mats
Leguminivora glycinivorella Mats is one of the main pests of heilongjiang soybean, moth - eaten ratio can be as a forecast index. It is influenced by various factors such as wintering base and weather conditions. It is a complex nonlinear non - normal system. According to basic principle of artificial neural network modeling, neural network prediction model based on the data in Shuangcheng city , Heilongjiang province was established. The model prediction and back - test accuracy were both higher. Thus it can be a new prediction method of moth - eaten ratio of Leguminivora glycinivorella Mats.

Leguminivora glycinivorella Matsmoth -eaten ratioNeural network forecasting

甄丽萍、邓华玲

展开 >

东北农业大学工程学院,理学院,黑龙江 哈尔滨150030

大豆食心虫 虫食率 神经网络 预测

黑龙江省博士后基金资助项目

LBH-205033

2011

农业系统科学与综合研究
中国系统工程学会农业系统工程委员会 中国科学院东北地理与农业生态研究所

农业系统科学与综合研究

CSTPCD
影响因子:0.811
ISSN:1001-0068
年,卷(期):2011.27(3)
  • 2
  • 3