首页|Poly(Ionic Liquid)as an Anion Exchange Membrane for a 3.3 V Copper-Lithium Battery

Poly(Ionic Liquid)as an Anion Exchange Membrane for a 3.3 V Copper-Lithium Battery

扫码查看
Metal-metal battery bears great potential for next-generation large-scale energy storage system because of its simple manufacture process and low production cost.However,the cross-over of metal cations from the cathode to the anode causes a loss in capacity and influences battery stability.Herein,a coating of poly(ionic liquid)(PIL)with poly(diallyldimethylammonium bis(trifluoromethanesulfonyl)imide)(PDADMA+TFSI-)on a commercial polypropylene(PP)separator serves as an anion exchange membrane for a 3.3 V copper-lithium battery.The PIL has a positively charged polymer backbone that can block the migration of copper ions,thus improving Coulombic efficiency,long-term cycling stability and inhibiting self-discharge of the battery.It can also facilitate the conduction of anions through the membrane and reduce polarization,especially for fast charging/discharging.Bruce-Vincent method gives the transport number in the electrolyte to be 0.25 and 0.04 for PP separator without and with PIL coating,respectively.This suggests that the PIL layer reduces the contribution of the internal current due to cation transport.The use of PIL as a coating layer for commercial PP separator is a cost-effective way to improve overall electrochemical performance of copper-lithium batteries.Compared to PP and polyacrylic acid(PAA)/PP separators,the PIL/PP membrane raises the Coulombic efficiency to 99%and decreases the average discharge voltage drop to about 0.09 V when the current density is increased from 0.1 to 1 mA cm-2.

anion exchange membranecopper cathodecycle stabilityion transportmetal-metal batterypoly(ionic liquid)

Kaiming Xue、Yu Zhao、Pui-Kit Lee、Denis Y.W.Yu

展开 >

School of Energy and Environment,City University of Hong Kong,83 Tat Chee Ave,Kowloon,Hong Kong,China

Research Grants Council of the Hong Kong Special Administrative Region,China

CityU 11305220

2023

能源与环境材料(英文)

能源与环境材料(英文)

CSCD
ISSN:
年,卷(期):2023.6(4)
  • 33