首页|顾及时空特征的参考作物蒸散量集成学习估算

顾及时空特征的参考作物蒸散量集成学习估算

扫码查看
为提升参考作物蒸散量(ET0)的估算精度,以四川省为研究区域,发现全省ET0 的数据变化具有明显的时间和空间自相关性,继而在气象特征基础上引入时空特征构建以 XGBoost,LightGBM,GBDT、随机森林和极限树为基模型的Stacking模型.将顾及时空特征的Stacking模型与其各个基模型以及经验模型彭曼公式(FAO 56 Penman-Monteith)的决定系数、平均绝对值误差和均方误差等多项指标进行了全面的精度对比验证.试验结果表明:在顾及空间特征的情况下,Stacking模型在测试集上决定系数精度提升了 3%,平均绝对值误差和均方误差分别降低了51%和 76%;在顾及时序特征的情况下,Stacking模型在测试集上的决定系数精度提升了4%,均方误差和平均绝对值误差分别降低了 92%和 72%.这表明时空特征的引入可有效提升模型估算ET0 性能.在同时顾及时空特征的情况下,Stacking模型相较于彭曼公式,决定系数提升了 39%,均方误差、平均绝对值误差分别降低了 95%和 77%,并且,在 2006-2010 年逐年精度验证中,Stacking模型精度始终优于其每年最优基模型精度.因此,顾及时空特征的Stacking模型可有效提升四川省ET0 估算精度.
Ensemble learning estimation of reference crop evapotranspiration taking into account temporal and spatial characteristics
In order to improve the estimation accuracy of reference crop evapotranspiration(ET0),Si-chuan Province was taken as the research area to reveal that the data changes of ET0 in Sichuan Pro-vince had obvious temporal and spatial autocorrelation.Then,based on meteorological characteristics,temporal and spatial features were introduced to construct XGBoost and LightGBM,GBDT,random forest and extreme tree-based Stacking model.The Stacking model with its base model and empirical model(FAO 56 Penman-Monteith)was comprehensively verified from multiple indicators such as co-efficient of determination,mean absolute error and mean square error.The experimental results show that considering the spatial characteristics,the Stacking model improves the coefficient of determination on the test set by 3%,and the mean absolute error and mean square error are reduced by 51%and 76%,respectively.Taking into account the temporal characteristics,the Stacking model improves the accuracy of the upper coefficient of determination on the test set by 4%,and the mean absolute error and mean square error are reduced by 92%and 72%,respectively.This shows that the introduction of temporal and spatial characteristics can effectively improve the ET0 performance of the model.With both spatial and temporal characteristics in mind,compared with Penman-Monteith's formula,the Stacking model's coefficient of determination increases by 39%,and the mean absolute error and mean square error reduced by 95%and 77%,respectively.In the year-by-year accuracy verification in 2006-2010,the accuracy of the Stacking model is always better than its annual accuracy optimal base model.Therefore,the Stacking model considering the spatial and temporal characteristics can effectively improve the ET0 estimation accuracy in Sichuan Province.

reference crop evapotranspirationStacking modeltemporal and spatial characteristicsensemble learning

刘傲、赵东保、魏义长、肖炼

展开 >

华北水利水电大学测绘与地理信息学院,河南 郑州 450046

自然资源部四川基础地理信息中心,四川 成都 610041

参考作物蒸散量 Stacking模型 时空特征 集成学习

国家自然科学基金四川省科技重点研发计划嵩山实验室预研项目

419713462022YFN002YYJC062022013

2024

排灌机械工程学报
中国农业机械学会排灌机械分会,江苏大学流体机械工程技术研究中心

排灌机械工程学报

CSTPCD北大核心
影响因子:1.055
ISSN:1674-8530
年,卷(期):2024.42(2)
  • 7