首页|基于无人机多光谱遥感的苹果树冠层SPAD反演

基于无人机多光谱遥感的苹果树冠层SPAD反演

扫码查看
为探讨利用无人机多光谱遥感影像监测苹果树冠层叶绿素含量的可行性,以南疆矮砧密植苹果树为研究对象,利用无人机获取试验区多光谱影像,选取 10 个植被指数,分析所选植被指数与实测SPAD值的相关性,将与SPAD相关性较好的 7 个植被指数作为模型的输入变量,利用机器学习构建一元线性回归、偏最小二乘回归、支持向量机回归、随机森林回归和岭回归的苹果树冠层SPAD反演模型,通过精度检验确定最优模型.结果表明,7 个植被指数ND VI,EVI,SAVI,OSAVI,GND VI,RVI,GRVI与SPAD具有较好的相关性,相关系数为 0.4~0.7,均在P小于 0.01 水平上极显著相关.采用随机森林回归建立的模型表现最优,其建模集R2 为0.728,RMSE为2.292,RPD为 1.920;验证集R2 为0.702,RMSE为 2.527,RPD为 1.832.因此,基于无人机多光谱遥感的RF模型可以实现苹果树冠层SPAD的快速准确估算.
Estimation of apple tree canopy SPAD based on UAV multispectral remote sensing
To explore the feasibility of using UAV(unmanned aerial vehicle)multispectral remote sensing images to monitor the chlorophyll content of apple tree canopy,apple trees planted closely on low rootstocks in southern Xinjiang were taken as the research object,and UAV was used to obtain multispectral images of the experimental area.In this study,10 vegetation indices were selected and the measured canopy SPAD values of the orchard were extracted from multispectral remote sensing ima-ges for Pearson correlation analysis,and 7 vegetation indices with better correlation with SPAD were taken as the input variables of the model.The machine learning algorithms,such as univariate linear regression,partial least squares regression,support vector machine regression,random forest regression and ridge regression,were constructed.The SPAD inversion model of apple tree canopy was constructed,and the optimal model was determined by accuracy test.The results show that seven vege-tation indices ND VI,EVI,SAVI,OSAVI,GND VI,RVI,and GRVI have good correlation with SPAD,with correlation coefficients in the ranging from 0.4 to 0.7,and all of which are highly significant corre-lation at the P less than 0.01 level.The model established using random forest regression model exhibits superior performance,achieving a modeling set R2 of 0.728,an RMSE of 2.292,and an RPD of 1.920,respectively.For the validation set,the R2 is 0.702,RMSE stands at 2.527,and RPD rea-ches 1.832,respectively.Thus,the combination of UAV multispectral remote sensing and a random forest regression model enables real-time and accurate estimation monitoring of SPAD in apple tree canopies.

apple treeunmanned aerial vehiclemultispectral remote sensingSPADmachine learning

刘江凡、赵泽艺、李朝阳、高阳、赵鑫、江文格、龚智

展开 >

塔里木大学水利与建筑工程学院,新疆阿拉尔 843300

中国农业科学院西部农业研究中心,新疆昌吉 831100

农业农村部西北绿洲节水农业重点实验室,新疆 石河子 832000

中国农业科学院农田灌溉研究所,河南 新乡 453002

展开 >

苹果树 无人机 多光谱遥感 SPAD 机器学习

兵团财政科技计划国家自然科学基金

2022BC00951669032

2024

排灌机械工程学报
中国农业机械学会排灌机械分会,江苏大学流体机械工程技术研究中心

排灌机械工程学报

CSTPCD北大核心
影响因子:1.055
ISSN:1674-8530
年,卷(期):2024.42(5)
  • 22