首页|基于改进层次样本熵和极限学习机的离心泵故障诊断方法

基于改进层次样本熵和极限学习机的离心泵故障诊断方法

扫码查看
为了提高离心泵早期故障诊断模型的准确性,提出一种改进层次样本熵(improved hierar-chical sample entropy,IHSE)和极限学习机(extreme learning machine,ELM)相结合的离心泵故障诊断方法。首先,针对传统分层样本熵在高层次下算法稳定性弱的问题,利用移动平均和移动差分过程代替传统的分层模式,提出一种新的评估时序信号复杂性工具——IHSE;然后,利用IHSE提取离心泵振动信号的故障特征;最后,将故障特征输入ELM模型,实现离心泵不同运行状态的有效识别。研究结果表明:所提方法在2个不同类型离心泵故障数据集上的诊断率分别为99。58%和99。68%,在所有诊断模型中表现最佳,表明该方法具有良好的诊断性能。研究结果为离心泵故障诊断提供了一种新的方法,具有良好的参考价值与应用前景。
Fault diagnosis method of centrifugal pump based on improved hierarchical sample entropy and extreme learning machine
To improve the accuracy of early fault diagnosis models for centrifugal pumps,a fault diag-nosis method for centrifugal pump based on the improved hierarchical sample entropy(IHSE)and ex-treme learning machine(ELM)was proposed.Firstly,aiming at the problem of weak algorithm stability of traditional hierarchical sample entropy at high level,a new time series signal complexity evaluation tool named IHSE was proposed by using moving average and moving difference process in-stead of the traditional hierarchical model.Secondly,IHSE was used to extract fault features of centri-fugal pump vibration signal.Finally,the fault features were input into ELM model to realize the effec-tive identification of different operating states of centrifugal pumps.The results show that the proposed method achieves diagnostic rates of 99.58%and 99.68%on two different types of centrifugal pump fault data sets,respectively,and performs the best among all diagnostic models,indicating that the proposed model has good diagnostic performance.This study provides a new method for fault diagnosis of centrifugal pump,and has good reference value and application prospects.

centrifugal pumpfault diagnosissample entropyfeature extractionextreme learning machine

王卫玉、赵训新、魏加达、陈飞、王斌、陈帝伊

展开 >

五凌电力有限公司,湖南长沙 410004

国家电力投资集团水电产业创新中心,湖南长沙 410004

西北农林科技大学水利与建筑工程学院,陕西杨凌 712100

离心泵 故障诊断 样本熵 特征提取 极限学习机

国家自然科学基金资助项目国家电力投资集团统筹科研项目

52339006TC2020SD01

2024

排灌机械工程学报
中国农业机械学会排灌机械分会,江苏大学流体机械工程技术研究中心

排灌机械工程学报

CSTPCD北大核心
影响因子:1.055
ISSN:1674-8530
年,卷(期):2024.42(9)