首页|离心泵水力优化问题代理模型性能的参数化

离心泵水力优化问题代理模型性能的参数化

扫码查看
为了解决离心泵水力优化问题中代理模型的选择与样本数量的确定缺乏系统理论依据的问题,基于3 400组不同的管道泵设计样本,针对离心泵优化设计中常用的3种代理模型(人工神经网络、响应面模型和克里金模型)进行了参数化分析。通过对比不同样本数量下3种模型的性能表现与预测精度,发现响应面模型在处理离心泵多参数优化问题时的拟合精度较差;而克里金模型和人工神经网络在单部件优化中表现出色。在多部件联合优化或复杂目标函数下,仅多隐藏层级联前馈神经网络具备一定的可靠性,但仍难以完全满足优化需求。此外,研究表明,当样本数较少(为参数总量的1。0~1。2倍)时,单隐层前馈神经网络的性能最优;而当样本数充足(大于参数总量的2。0倍)时,多隐藏层前馈神经网络与级联前馈神经网络表现出更高的可靠性。
Parametric on performance of surrogate models in hydraulic optimization of centrifugal pumps
In order to solve the problem of the lack of system theoretical basis for the determination of surrogate model in the optimization of hydraulic performance of centrifugal pump,a parametric analysis was conducted based on 3 400 pipeline pump design samples,three commonly used surrogate models in centrifugal pump optimization were evaluated:artificial neural networks,response surface models,and Kriging models.The results,comparing model performance and prediction accuracy across various sample sizes,show that the response surface model struggle with accuracy in multi-parameter optimiza-tion scenarios,while Kriging models and artificial neural networks excel in single-component optimiza-tions.For more complex objectives or multi-component optimizations,only deep feedforward neural net-works with multiple hidden layers demonstrate some reliability,but still fall short of meeting all optimi-zation requirements.Additionally,the study reveals that single-layer feedforward neural networks per-form best with smaller sample sizes(1.0 to 1.2 times the total number of parameters),while deep feedforward and cascade feedforward networks prove more reliable when the sample size exceeds twice the total number of parameters.

centrifugal pumpoptimal designsurrogate modelmachine learningparametric analysis

甘星城、裴吉、袁寿其、王文杰、颜爱忠、赵芸

展开 >

江苏大学国家水泵及系统工程技术研究中心,江苏镇江 212013

中苏科技股份有限公司,江苏南京 211100

离心泵 优化设计 代理模型 机器学习 参数化分析

2024

排灌机械工程学报
中国农业机械学会排灌机械分会,江苏大学流体机械工程技术研究中心

排灌机械工程学报

CSTPCD北大核心
影响因子:1.055
ISSN:1674-8530
年,卷(期):2024.42(12)