首页|稀疏图的(2,4)-染色

稀疏图的(2,4)-染色

扫码查看
若一个图G的顶点集可以分为V1和V2两部分,使得在G的导出子图G[V1]和G[V2]中,顶点的最大度分别是d1和d2,则称G是(d1,d2)-可染色的.通过分析极小反例的结构性质,运用权转移方法证明了如果一个图G的最大平均度mad(G)<37/12,则G是(2,4)-可染色的.由此得到推论:围长大于等于6的平面图是(2,4)-可染色的.
(2,4)-coloring of Sparse Graphs
A graph G is(d1,d2)-colorable if its vertex set can be partitioned into two sets V1 and V2 where the maximum degree of the graph induced by V1 and V2 is at most d1 and d2.By analyzing the structural properties of mini-mal counterexamples,it is proved that every graph with maximum average degree mad(G)<37/12 is(2,4)-colorable by using discharging method.It is concluded that every planar graph with girth at least 6 is(2,4)-colorable.

(2,4)-coloringadjacent pointsaturationdischarging

胡黎莉

展开 >

闽南师范大学 数学与统计学院,福建 漳州 363000

(2,4)-染色 邻点 饱和 权转移

福建省自然科学基金闽南师范大学博士启动基金

2021J020484201-L21912

2024

莆田学院学报
莆田学院

莆田学院学报

影响因子:0.239
ISSN:1672-4143
年,卷(期):2024.31(2)
  • 7