首页|一种基于波长的分布式改进的水下图像增强算法

一种基于波长的分布式改进的水下图像增强算法

扫码查看
针对光在水下传播时会衰减和散射,导致水下收集的图像通常出现颜色失真或对比度低等现象,提出了一种基于波长的分布式改进的深度神经网络模型,模型重新设置了超参数值以平滑算法优化的梯度摆动幅度,引入了 dropout层以缓解网络模型的过拟合现象;在公开的数据集上,应用改进模型与现有的4种水下图像增强算法进行定量与定性实验;实验结果表明,该模型在不同颜色失真的水下图像增强结果上优于对比算法,且对带噪声干扰的水下图像仍然具有较好的增强效果.
An Improved Wavelength-based Distributed Underwater Image Enhancement Algorithm
An improved wavelength-based distributed deep neural network model is proposed to address the attenuation and scattering of light during underwater propagation,which often leads to color distortion or low contrast in captured underwater images.The model resets the hyperparameter values to smooth out the gradient swing amplitude of algorithm optimization,and introduces a dropout layer to alleviate overfitting of the network model.Quantitative and qualitative experiments on publicly available dataset are conducted for the improved model and four existing underwater image enhancement algorithms.The experimental results show that the proposed model outperforms comparison algorithms in enhancing underwater images with different color distortions,and still has a good enhancement effect on underwater images with noise interference.

underwater image enhancementdeep neural networkwavelengthdistributed

黄佳燕、卞佳伟、骆绍烨

展开 >

莆田学院 新工科产业学院,福建 莆田 351100

水下图像增强 深度神经网络 波长 分布式

福建省中青年教师教育科研项目福建省中青年教师教育科研项目莆田市科技计划

JAT220829JAT2104102022GZ2001ptxy14

2024

莆田学院学报
莆田学院

莆田学院学报

影响因子:0.239
ISSN:1672-4143
年,卷(期):2024.31(2)
  • 13