首页|加速随机递归梯度下降算法的复杂度分析

加速随机递归梯度下降算法的复杂度分析

扫码查看
课题组为进一步降低传统随机递归梯度下降算法(SARAH)复杂度,利用内循环数目倍增技术,提出了一种新的算法 Epoch-Doubling-SARAH算法,并通过构造Lyapunov函数证明了 Epoch-Doubling-SARAH算法在非强凸条件下具有线性收敛阶,且推导出了算法的复杂度为O(1/ε+nlog(1/e)),该结果优于SARAH算法复杂度.再将Epoch-Doubling-SARAH算法与SARAH算法在Mnist和Mushroom两个数据集上进行对比实验,实验结果表明Epoch-Doubling-SARAH算法具有更快的收敛速度,进而说明了本文算法理论分析的正确性.
Complexity Analysis of Accelerated Stochastic Recursive Gradient Descent Algorithm
In order to reduce the complexity of traditional stochastic recursive gradient descent algorithm(SARAH),by using the inner loop number multiplication technique,a new accelerated algorithm called Epoch-Doubling-SARAH is proposed,and the convergence of the algorithm is studied under non-strongly convex.It is proved that the Epoch-Doubling-SARAH algorithm has a linear convergence rate and the complexity is O(1/ε+nlog(1/ε))by constructing Lyapunov function,this result is better than the complexity of traditional SARAH algorithm.Finally,the Epoch-Doubling-SARAH algorithm is compared with SARAH algorithm on Mnist and Mushroom data sets,experimental results show that Epoch-Doubling-SARAH algorithm has faster convergence and justify the correctness of theoretical analysis.

machine learningstochastic recursive gradientdescent algorithmEpoch-Doubling procedureconvergence ratealgorithm complexity

费经泰、程一元、查星星

展开 >

巢湖学院数学与大数据学院,安徽巢湖 238024

机器学习 随机递归梯度 下降算法 循环倍增 收敛速率 算法复杂度

安徽省高校自然科学研究项目巢湖学院校级科研项目&&

KJ2021A1033XLZ-202202XLY-202105

2024

萍乡学院学报
萍乡高等专科学校

萍乡学院学报

影响因子:0.275
ISSN:2095-9249
年,卷(期):2024.41(3)