首页|基于ISODATA聚类算法的个性化图书精准推荐方法研究

基于ISODATA聚类算法的个性化图书精准推荐方法研究

扫码查看
[目的/意义]为提高高校图书馆图书个性化推荐的效率和用户满意度,提出了一种有效的在线图书推荐方法,使用聚类的方法对图书进行分类,然后根据图书的相似度来推荐新书.[方法/过程]提出基于ISODATA聚类方法,可以实时调整聚类的精细程度.对 10 个不同的用户进行测试计算其TPR、FPR和F1 score.FPR的平均值低于TPR的平均值,这意味着分类器更致力于将读者不感兴趣的书从读者的列表中剔除.此外,绘制了TPR-FPR分布图,以得到分类器精度的图形化表示.[结果/结论]将所提出的算法与基于k-means聚类的推荐算法进行了对比,结果表明基于ISODATA聚类算法的推荐方法较基于传统聚类算法更加准确有效.
Research on Personalized Book Accurate Recommendation Method Based on ISODATA Clustering Algorithm
[Purpose/significance]In order to improve the efficiency and user satisfaction of personalized book recommendation in university library,an effective online book recommendation method is proposed,which uses the clustering method to classify books,and then recommends new books according to the similarity of books.[Method/process]This paper proposes a clustering method based on ISODATA,which can adjust the fineness of clustering in real time.Ten different users were tested to calculate their TPR,FPR and F1 scores.The average value of FPR is lower than the average value of TPR,which means that the classifier is more committed to removing books that are not of interest to the readers from the reader's list.In addition,the TPR-FPR distribution map is drawn to obtain a graphical representation of the classifier accuracy.[Result/conclusion]The proposed algorithm is compared with the recommendation algorithm based on k-means clustering.The results show that the recommendation method based on ISODATA clustering algorithm is more accurate and effective than the traditional clustering algorithm.

book recommendationrecommendation systemclusteringmachine learning

陈长华、赵晨洁、汪晴

展开 >

南京航空航天大学图书馆 江苏南京 210016

南京航空航天大学工业和信息化智库评价中心 江苏南京 210016

图书推荐 推荐系统 聚类 机器学习

中央高校基本科研业务费专项南京航空航天大学研究生教育改革研究项目

NR20220182021YJXGG41

2024

情报探索
福建省科技情报学会,福建省科技信息研究所

情报探索

CHSSCD
影响因子:0.52
ISSN:1005-8095
年,卷(期):2024.(3)
  • 20