首页|基于BERT-Graphormer的中文专利文本分类模型研究

基于BERT-Graphormer的中文专利文本分类模型研究

扫码查看
[目的/意义]随着专利申请量不断增长和专利分类类别的复杂化,针对提高专利分类工作效率、审查质量、节约人力资源的需求,构建中文专利文本分类模型.[方法/过程]通过微调Graphormer模型对专利标签的结构及信息进行建模,利用建模后的标签信息来增强BERT模型的文本表示.[结果/结论]相对于其他基线模型,该模型的Micro-F1与Macro-F1分数分别提升了 1.6%与3.5%.实现了多标签专利的自动分类,通过对标签、文本的信息进行建模、融合,从而进一步提升模型的分类效果.
Research on Chinese Patent Text Classification Model Based on BERT-Graphorme
[Purpose/significance]With the increasing number of patent applications and the complexity of patent classification categories,the paper constructs a Chinese patent text classification model based on BERT-Graphormer in order to improve the efficiency of patent classification,review quality and save human resources.[Method/process]The paper models the structure and information of patent labels by fine-tuning the Graphormer model,and enhances the text representation of BERT model by using the modeled label in-formation.[Result/conclusion]Compared with other baseline models,the Micro-F1 and Macro-F1 scores of the proposed model are increased by 1.6%and 3.5%.The study successfully achieved the automatic classification of multi-label patents.The model's classifi-cation effectiveness is significantly improved by modeling and integrating information from labels and text.

patent classificationhierarchical classificationattention mechanismBERT

李永忠、吕菲、黄种标

展开 >

福州大学经济与管理学院 福建福州 350000

专利分类 层次分类 注意力机制 BERT

2024

情报探索
福建省科技情报学会,福建省科技信息研究所

情报探索

CHSSCD
影响因子:0.52
ISSN:1005-8095
年,卷(期):2024.(6)