首页|Word2Vec新闻推荐系统设计与实现——基于Attention机制与Embedding优化

Word2Vec新闻推荐系统设计与实现——基于Attention机制与Embedding优化

扫码查看
[目的/意义]设计基于Attention机制与Embedding优化的Word2Vec新闻推荐系统,通过词向量计算上的性能提升改善推荐成效.[方法/过程]重点解决改进Word2Vec的新闻推荐系统建设中的 3 个关键技术难点:①基于Attention机制与Embedding优化的Word2Vec模型构建,为系统提供词向量计算神经网络;②MongoDB及Redis数据库的可用性提升,提升分布式框架下的数据库架构鲁棒性;③构建智能监控与运维平台.[结果/结论]对比Word2Vec,基于Attention机制与Embedding优化的Word2Vec在损失值和准确率方面明显提升,数据库层优化及智能监控与运维平台提升系统可靠性和稳定性.
Word2Vec News Recommendation System Design and Implementation:Based on Attention Mechanism and Embedding Optimization
[Purpose/significance]This paper is to design a Word2Vec news recommendation system based on Attention mecha-nism and Embedding optimization,and improve the recommendation effectiveness through the performance enhancement of word vector computation.[Method/process]This paper focus on solving three key technical difficulties in improving the construction of a news rec-ommendation system for Word2Vec:①Building a Word2Vec model based on Attention mechanism and Embedding optimization,provi-ding a word vector computing neural network for the system;②Improving the availability of MongoDB and Redis databases,and enhan-cing the robustness of database architecture in distributed frameworks;③Building an intelligent monitoring and operation platform.[Re-sult/conclusion]Compared with Word2Vec,Word2Vec based on Attention mechanism and Embedding optimization significantly im-proves loss value and accuracy.Database layer optimization and intelligent monitoring and operation platform improve system reliability and stability.

news recommendationword vectorattention mechanism

陈宇

展开 >

福州理工学院电子工程学院 福建福州 350506

新闻推荐 词向量 注意力机制

福建省中青年教师教育科研项目(科技类)福州理工学院校级教学改革研究课题项目

JAT220483LGJG2021019

2024

情报探索
福建省科技情报学会,福建省科技信息研究所

情报探索

CHSSCD
影响因子:0.52
ISSN:1005-8095
年,卷(期):2024.(10)