首页|基于LDA和TextCNN的跨平台网络舆情风险预警研究

基于LDA和TextCNN的跨平台网络舆情风险预警研究

扫码查看
[目的/意义]分析多个社交平台上的网络舆情数据,评估网络舆情风险,并进行风险预警研究,具有重要的社会意义和实际价值.[方法/过程]先构建网络舆情风险指标体系,然后使用层次分析法确定指标权重,以此构建网络舆情风险预警模型.实证部分使用某一地级市的网络舆情数据进行分析,先使用LDA对微博平台上的数据进行主题聚类,再根据聚类后的数据使用TextCNN对其余社交平台数据进行分类,最后使用网络舆情风险预警模型对各主题舆情进行研究.[结果/结论]本文构建的网络舆情风险预警模型具有一定的准确性和有效性.本文的网络舆情风险预警模型可以提供信息支持从而提高决策效率和网络舆情风险的监测效率.
Research on Cross-platform Network Public Opinion Risk Early Warning Based on LDA and TextCNN
[Purpose/significance]It is of great social significance and practical value to analyze network public opinion data on multiple social platforms,assess network public opinion risks,and conduct risk early warning research.[Method/process]The paper constructs the network public opinion risk index system firstly,and then uses the analytic hierarchy process to determine the index weight,so as to build the network public opinion risk early warning model.The empirical part uses the network public opinion data of a prefecture-level city for analysis.The paper uses LDA to cluster the data on Weibo platform firstly,and then applies the TextCNN to classify the data of other social platforms according to the clustered data,and finally employs network public opinion risk early warning model to study the public opinion on various topics.[Result/conclusion]The network public opinion risk early warning model construc-ted in this paper has certain accuracy and effectiveness.The network public opinion risk early warning model in this paper can provide information support to improve decision-making efficiency and monitoring efficiency of network public opinion risk.

network public opinionrisk early warningtopic clusteringtext classification

管雨翔、王娟、兰月新、张鹏

展开 >

中国人民警察大学网络舆情治理研究中心 河北廊坊 065000

网络舆情 风险预警 主题聚类 文本分类

教育部人文社会科学研究项目青年基金项目

20YJC630145

2024

情报探索
福建省科技情报学会,福建省科技信息研究所

情报探索

CHSSCD
影响因子:0.52
ISSN:1005-8095
年,卷(期):2024.(10)