首页|大语言模型与知识图谱的比较和融合研究

大语言模型与知识图谱的比较和融合研究

扫码查看
[目的/意义]旨在探索大语言模型和知识图谱两种重要的知识表示技术在发展中的互补性,以便为其融合应用提供指导.[方法/过程]通过文献资料调研,对大语言模型和知识图谱的构建方式、知识表示和应用场景进行深入研究.采用比较分析方法,揭示它们在技术特征、知识表示、应用领域的异同点.最后,对两者的互补性以及融合应用的可能性进行总结和归纳.[结果/结论]通过知识图谱增强大语言模型,有助于提升其预训练效果和推理能力;通过大语言模型增强知识图谱的构建、补全和问答能力,可以实现更全面、准确和智能的知识服务.
Research on Comparison and Fusion between Large Language Models and Knowledge Graphs
[Purpose/significance]This paper aims to explore the complementarity in development between two important knowl-edge representation technologies,large language models and knowledge graphs,so as to provide guidance for their integrated application.[Method/process]Through the research of literature data,the paper conducted an in-depth study on the construction methods,knowl-edge representation,and application scenarios of large language models and knowledge graphs.It used the comparative analysis to reveal their similarities and differences in technical features,knowledge representation,and application domains.Finally,it summarized the complementarity of the two and the possibility of integrated application.[Result/conclusion]Enhancing large language models through knowledge graphs will help to improve their pre-training and inference capabilities.Enhancing the construction,completion and question answering ability of knowledge graphs through large language models can achieve more comprehensive,accurate and intelligent knowl-edge service.

large language modelknowledge graphartificial intelligencenatural language processknowledge representation

朱良兵、刘发德

展开 >

柳州职业技术学院电子信息工程学院 广西 柳州 545616

玛拉工艺大学计算机、信息和数学学院 马来西亚莎阿南 40450

大语言模型 知识图谱 人工智能 自然语言处理 知识表示

2024

情报探索
福建省科技情报学会,福建省科技信息研究所

情报探索

CHSSCD
影响因子:0.52
ISSN:1005-8095
年,卷(期):2024.(12)