首页|融合多源异构在线评论的开放式创新社区创意采纳预测研究

融合多源异构在线评论的开放式创新社区创意采纳预测研究

扫码查看
整合内外部创新资源以获得市场优势一直是企业关注的问题,这是因为企业的创新能力直接决定了企业的兴衰成败.已有的以在线评论为数据源预测开放式创新社区中创意采纳的研究主要依靠单一的文本特征.基于启发式系统性说服理论,本文提出了一种新的开放式创新社区创意采纳预测模型.该模型在基于信任转移理论和价值共创理论基础上,归纳了多源异构在线评论的定义,并从启发式评论者特征、启发式评论特征和系统性评论特征3个层次特征来描述创意.此外,还引入图注意力网络实现了3个层次创意特征的融合.本文从真实的开放式创新社区收集了数据集,验证了本文模型及其各个特征,该模型准确预测创意采纳的综合性能大约在97%,图模型特征融合后的分类预测结果优于传统的机器学习分类算法.研究结果不仅证明了图模型在特征融合中的有效性,而且从融合评论特征和评论者特征的角度,为创意采纳预测提供了方法和理论上的支持.
Integrating Multi-source Heterogeneous Online Reviews to Predict the Adoption of Ideas in Open Innovation Communities
Integrating internal and external innovation resources to gain market advantages has always been a concern of enterprises,because their innovation ability directly impacts their success or failure.In previous research,online reviews were used as a data source for predicting the adoption of ideas in open innovation communities,and such research mainly relied on a single text feature.Based on heuristic systematic persuasion theory,we propose a new predictive model for idea adoption in open innovation communities.Based on value co-creation theory and trust transfer theory,our model summa-rizes the definition of multi-source heterogeneous online reviews and describes creativity based on features at three levels:heuristic reviewer features,heuristic review features,and systematic review features.In addition,we introduce a graph at-tention network to realize the integration of the three levels of idea features.We then collected data sets from a real open in-novation community,with which we verified the proposed model and its various characteristics.The comprehensive perfor-mance of the model in accurately predicting the adoption of ideas is about 97%.The results also show that the classifica-tion prediction results of the graph model with feature fusion are better than the traditional machine learning classification algorithm.These findings not only demonstrate the effectiveness of the graph model in feature fusion,but the integration of the features of reviews and reviewers also makes a methodological and theoretical contribution to the study of idea adop-tion.

multi-source heterogeneous online reviewsdata fusiongraphic modelopen innovation communityideas adoption

刘嘉宇、李贺、沈旺、祝琳琳、李世钰

展开 >

吉林大学商学与管理学院,长春 130012

多源异构在线评论 数据融合 图模型 开放式创新社区 创意采纳

国家自然科学基金项目

71974075

2024

情报学报
中国科学技术情报学会 中国科学技术信息研究所

情报学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.296
ISSN:1000-0135
年,卷(期):2024.43(1)
  • 14