首页|个性化学术论文推荐研究综述

个性化学术论文推荐研究综述

扫码查看
个性化学术论文推荐研究旨在为学术用户提供满足其个性化需求的论文列表,有助于解决大数据时代下学术用户精准获取论文困难的问题.该研究一直是推荐系统领域探讨的热点之一,本文对这一研究进行了系统梳理及分析,旨在厘清相关研究的发展脉络与现状,明确未来研究方向,推动相关研究的进一步发展.以国内外期刊、会议中发表的有关个性化学术论文推荐的相关文献作为研究对象,通过归纳总结方法,梳理了个性化学术论文推荐研究中的主要技术,即基于协同过滤的方法、基于内容的方法以及基于图的方法,然后总结了该研究的公开数据集、评价方法和评价指标.研究结果发现,已有工作缺乏对研究者兴趣的全方位建模以及用户隐私保密的相关研究,且在可解释的推荐、面向用户惊喜的推荐以及推荐结果的评价等方面存在不足.最后,基于解决已有研究中存在的不足结合当前推荐系统领域的整体发展趋势,对个性化学术论文推荐的发展方向进行了展望.
A Review of Personalized Recommendation of Academic Papers
Personalized academic paper recommendation(PAPR)aims to provide academic users with a list of papers to meet their personalized needs,which can help academic users surmount the difficulties of accessing papers in our era of big data.This research has been a hot topic in the field of recommendation systems.Thus,this article systematically re-views and analyzes previous studies of PAPR to clarify the development context and current status of this field,illustrate future research directions,and promote the development of such research,as well as summarizing recent research progress on personalized paper recommendation based on papers published in Chinese and international journals and conferences.On this basis,the techniques(i.e.,collaborative filtering-based,content-based,and graph-based methods)of personalized academic paper recommendation are first reviewed in detail.Next,the public datasets,evaluation methods,and indicators of personalized academic paper recommendation are summarized and explored.The final results show that there is a lack of comprehensive modeling of researcher interest and research on user privacy protection in existing studies,and there are some shortcomings in research on explainable PAPR,serendipity-oriented PAPR,and evaluation of PAPR.Finally,possi-ble future research directions are pointed out based on the shortcomings of existing research and the overall development trends in the field of recommendation systems.

academic paperpersonalized recommendationuser interestacademic users

张晓娟、刘怡均、刘杰、陈卓

展开 >

四川大学公共管理学院,成都 610065

西南大学计算机与信息科学学院,重庆 400715

学术论文 个性化推荐 用户偏好 学术用户

国家社会科学基金一般项目

21BTQ072

2024

情报学报
中国科学技术情报学会 中国科学技术信息研究所

情报学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.296
ISSN:1000-0135
年,卷(期):2024.43(1)
  • 24