首页|长三角地区AI领域城市协同创新网络及影响因素研究

长三角地区AI领域城市协同创新网络及影响因素研究

扫码查看
探索城市协同创新的机制与影响因素,推动地区间与多主体的科技创新发展.本文采集2016-2021年的长三角地区AI(artificial intelligence)领域专利数据,以该地区核心的27座城市作为研究对象,将城市与专利技术知识组合构建城市协同创新网络.采用社会网络分析法对所构建网络的属性特征、离散程度与结构状态及其变化进行分析研究,利用指数随机图模型,结合城市的历年统计指标、城市等级和隶属省份以及历史经验网络,对城市协同创新形成机制与影响因素进行模型构建及分析.研究结果表明,长三角地区AI领域城市协同创新网络的规模和丰富性逐年增长,网络的可达性与影响力逐渐增加,核心城市与技术节点联系紧密、分布在不同子群中且稳定性程度逐渐提高,网络受限节点逐渐减少且结构愈加均衡;在网络形成机制及影响因素方面,节点的主效应中工业化水平和教育支出有明显的促进发展作用,隶属省份与行政等级的同质性对网络发展产生不同的作用,网络路径依赖趋势明显,上一年的现实网络对下一年的网络形成具有重要影响作用.
Urban Collaborative Innovation Network and Its Influencing Factors of the AI Field in the Yangtze River Delta Region
This study explores the mechanism and influencing factors of urban collaborative innovation,and promotes the development of science&technology innovation between regions and multiple subjects.It collects patent data in artificial intelligence(AI)in the Yangtze River Delta region from 2016 to 2021,combining cities and patented technology knowl-edge to build a collaborative innovation network based on 27 cities.It analyzes the network's centrality,cohesive subgroup,and structural hole using social network analysis.Additionally,exponential random graph models(ERGM)is used to ana-lyze the influencing factors of urban collaborative innovation by combining the historical statistical indicators,city level,subordinate province,and historical experience network.We find that the urban collaborative innovation network in AI in the Yangtze River Delta region has increased in scale and stability over time,and has become balanced.Regarding the in-fluencing factors of the network,the nodes'main effect plays an obvious role in promoting development and education ex-penditure at the industrialization level.Moreover,a homogeneous tie that affects the subordinate province and administra-tive level has different effects on network development.Additionally,the network has a relatively obvious path-depen-dence trend,and the actual network of the preceding year has an important impact on the network formation in the follow-ing year.

urban collaborative innovation networkinfluencing factorspatent datastatistical indicatorsartificial intelli-genceYangtze River Delta region

王曰芬、周玜宇、岑咏华

展开 >

天津师范大学大数据科学研究院,天津 300074

南京理工大学经济管理学院,南京 210094

城市协同创新网络 影响因素 专利数据 统计指标 人工智能 长三角地区

国家社会科学基金一般项目

22BTQ098

2024

情报学报
中国科学技术情报学会 中国科学技术信息研究所

情报学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.296
ISSN:1000-0135
年,卷(期):2024.43(4)
  • 31