首页|基于参考文献和文本内容学科分类的跨学科测度研究

基于参考文献和文本内容学科分类的跨学科测度研究

扫码查看
当前,全球面临诸多严峻挑战,需要多领域、多学科协同配合,用多种方式解决科学问题.因此,把握学科交叉融合的发展动向、探究不同学科的学科交叉程度的跨学科研究是值得关注的重要研究方向.本文综合参考文献和文本内容信息,构建了引文词嵌入SCIBERT-Attention模型,对期刊文献进行学科分类,并依据学科分类结果进行跨学科测度研究;同时,与单一信息输入的参考文献、文本内容跨学科测度进行对比,验证本文方法的可行性与有效性.研究发现,综合文本内容和参考文献信息能有效实现期刊文献的学科分类,比单一信息输入的学科分类效果更好;基于参考文献和文本内容学科分类能有效进行跨学科测度;学科分类体系的颗粒度会影响期刊文献的学科分类效果.
Interdisciplinary Measurement Research Based on Reference Literature and Text Content Subject Classification
Currently,the world is facing several scientific challenges that require collaborative efforts from multiple fields and disciplines to solve them in various ways.Therefore,grasping the development trend of interdisciplinary integration and exploring the degree of interdisciplinary research in different disciplines is an important research direction.This paper combines reference and text content information to construct a citation embedding SCIBERT attention model,which classi-fies journal literature by discipline and conducts interdisciplinary measurement research based on the results of discipline classification.Simultaneously,the feasibility and effectiveness of the method proposed in this study are verified by compar-ing it with interdisciplinary measures of single input references and text content.Research has found that integrating text content and reference information can effectively achieve disciplinary classification of journal literature,which is better than disciplinary classification with a single input of information.A disciplinary classification based on references and text content can effectively conduct interdisciplinary measurement.The granularity of the disciplinary classification system will affect the disciplinary classification effectiveness of journal literature.

interdisciplinary researchtext classificationtext miningmachine learninginterdisciplinary measurement

吕琦、上官燕红、李锐

展开 >

华北水利水电大学管理与经济学院,郑州 450046

郑州升达经贸管理学院管理学院,郑州 451191

跨学科研究 文本分类 文本挖掘 机器学习 跨学科测度

河南省高等学校人文社会科学研究一般项目(2023)

2023-ZZJH-176

2024

情报学报
中国科学技术情报学会 中国科学技术信息研究所

情报学报

CSTPCDCSSCICHSSCD北大核心
影响因子:1.296
ISSN:1000-0135
年,卷(期):2024.43(8)