首页|基于记忆提炼的对比度量增强在线类增量学习图像分类方法

基于记忆提炼的对比度量增强在线类增量学习图像分类方法

扫码查看
图像分类中类增量学习具有知识灾难性遗忘现象,现有的基于经验回放方法着重考虑的是记忆库的更新和采样方式,忽略了新旧样本之间的特征关系.为此,提出了一种基于记忆提炼的对比度量增强在线类增量学习图像分类方法(cME2),设计了两种新的正负样本对,对旧样本信息进行了加强重复再利用,强化了模型对冗余特征和共性特征的表达能力,基于最近邻均值分类器改善了嵌入空间中的样本分布合理性.最后,通过对比实验和消融实验验证了所提方法的有效性和高效性.
Contrast metric enhancement based on memory extraction for online class-incremental learning in image classification
In view of the catastrophic forgetting of previous knowledge in class incremental learning for image classification,existing replay-based methods focus on memory updating and sampling,while overlooking the feature relationships between old and new samples.To this end,the paper proposes a method called contrast metric enhancement based on memory extrac-tion(cME2)for Online Class-incremental Learning in Image Classification,which designs two new types of positive and neg-ative sample-pairs,enhances the reuse of old sample feature information,and strengthens the ability of model to express re-dundant features and common features.It improves the distribution of samples in embedding space based on the nearest class mean classifier.Finally,the effectiveness and efficiency of the proposed method are verified by comparison experiment and ablation experiment.

online class-incremental learningcatastrophic forgettingcontrastive learningexperience replay

王宏辉、殷进勇、杨建

展开 >

江苏自动化研究所, 江苏 连云港 222061

在线类增量学习 灾难性遗忘 对比学习 经验回放

2024

指挥控制与仿真
中国船舶重工集团公司 第七一六研究所

指挥控制与仿真

CSTPCD
影响因子:0.309
ISSN:1673-3819
年,卷(期):2024.46(1)
  • 25