首页|基于仿真实验的智能并行训练方法

基于仿真实验的智能并行训练方法

扫码查看
智能训练是利用机器学习算法对神经网络智能体模型进行训练优化的过程,智能体模型通过不断试错的训练方式实现智能提升.大规模训练数据是智能训练的必要条件,通常难以从现实世界中直接获取,如何通过仿真的方式生成大量有效的训练数据,是智能训练的重要研究方向.对此提出一种基于仿真实验的智能并行训练方法,利用仿真实验管理可快速生成批量仿真实验想定,并支持节点自动部署和运行,通过合理的训练架构设计和有效训练流程设计实现智能并行训练.通过实际案例展示了智能训练的仿真实验管理过程,并结合训练效果证明了给出的方法提高了智能训练效率和智能体泛化性.
Intelligent parallel training method based on simulation experiments
Intelligent training is the process of using machine learning algorithms to train and optimize neural network agent models.The agent model achieves intelligent improvement through continuous trial and error training.Large scale training da-ta is a necessary condition for intelligent learning training,which is usually difficult to obtain directly from the real world.How to generate a large amount of effective training data through simulation is an important research direction for intelligent agent training.This article proposes an intelligent parallel training method based on simulation experiments.By utilizing sim-ulation experiment management,batch simulation experiment scenarios can be quickly generated,and nodes can be automat-ically deployed and run.Intelligent parallel training can be achieved through reasonable training architecture design and ef-fective training process design.The simulation experiment management process of intelligent training is demonstrated through practical cases,and combined with training results,it is proven that the method proposed in this article improves the effi-ciency of intelligent training and the generalization of intelligent agents.

reinforcement learningintelligent trainingparallel trainingsimulation experiments

马春华

展开 >

电磁空间安全全国重点实验室, 四川 成都 610036

强化学习 智能训练 并行训练 仿真实验

2024

指挥控制与仿真
中国船舶重工集团公司 第七一六研究所

指挥控制与仿真

CSTPCD
影响因子:0.309
ISSN:1673-3819
年,卷(期):2024.46(1)
  • 6