首页|基于深度强化学习算法的火力-目标分配方法

基于深度强化学习算法的火力-目标分配方法

扫码查看
针对火力-目标分配问题解空间较大、离散、非线性等特点,提出了一种基于DQN的深度强化学习算法,通过将 6 层全连接前馈神经网络与Q-learning算法相结合,充分发挥了深度学习的感知能力和强化学习的决策能力,通过模型性能测试对比,该方法拟合能力较强、收敛速度较快、方差抖动性较小,并通过实际作战场景对算法进行了验证,所得的分配结果符合作战期望,可为指挥员火力打击分配问题决策提供一定参考.
Firepower-target assignment method based on deep reinforcement learning algorithm
Aiming at the characteristics of large solution space,discrete,dynamic and nonlinear of firepower-target assign-ment problem,this paper proposes a deep reinforcement learning algorithm based on DQN.By combining the 6-layer fully connected feedforward neural network with the Q-learning algorithm,the perception ability of deep learning and the decision-making ability of reinforcement learning are fully utilized.Through the comparison of model performance tests,this method has strong fitting ability,fast convergence speed and small variance jitter,and the distribution results meet the combat ex-pectations,which can provide some reference for commanders to make decisions on fire strike problems.

firepower-target assignmentdeep reinforcement learningQ-learning algorithmDQN algorithm

李伟光、陈栋

展开 >

陆军炮兵防空兵学院高过载弹药制导控制与信息感知实验室,安徽 合肥 230031

火力-目标分配 深度强化学习 Q-learning算法 DQN算法

2024

指挥控制与仿真
中国船舶重工集团公司 第七一六研究所

指挥控制与仿真

CSTPCD
影响因子:0.309
ISSN:1673-3819
年,卷(期):2024.46(3)
  • 12