首页|一种融入领域知识的领域短文本命名实体识别方法

一种融入领域知识的领域短文本命名实体识别方法

扫码查看
针对领域短文本中命名实体在计算资源受限情况下识别率不高的问题,设计了一种融入领域知识的双BiL-STM_CRF+全连接网络模型,对领域短文本命名实体进行识别.利用领域知识图谱中的关键知识实体及其关键关系,经投影变换、聚类和全局向量词嵌入处理,并基于词向量相似性计算,发现与待识别领域命名实体相似的关键知识实体,将其替换为关键知识实体后生成新的领域短文本,与未替换的领域短文本一同输入模型中进行命名实体识别,使领域知识融入领域短文本的命名实体识别过程,实验结果表明本方法较现有其他同类方法获得了较优的识别能力.
A domain short text naming entity recognition method integrated with domain knowledge
Addressing the issue of relatively low recognition rates for named entities in domain-specific short texts under re-source-constrained computational environments,a novel hybrid model combining a Dual BiLSTM_CRF architecture with a fully connected network is designed to identify named entities in these texts.The model leverages critical knowledge entities and their key relationships from a domain knowledge graph,which undergoes projection transformation,clustering,and global vector word embedding processing.Based on the calculation of word vector similarities,it identifies similar critical knowledge entities to those being recognized within the domain.These identified knowledge entities are then substituted into the original domain short text,generating an augmented version that is fed,along with the unmodified text,into the model for named entity recognition.This integration of domain knowledge into the recognition process of named entities in domain-spe-cific short texts has shown promising results.Experimental outcomes demonstrate that this method outperforms existing com-parable approaches in terms of its enhanced identification capabilities.

knowledge graphknowledge entitynamed entity recognitionbidirectional long short-term memory networks

戎纪光、任志国、李书强

展开 >

中国电子科技集团公司第五十四研究所,河北 石家庄 050081

知识图谱 知识实体 命名实体识别 双向长短期记忆网络

2024

指挥控制与仿真
中国船舶重工集团公司 第七一六研究所

指挥控制与仿真

CSTPCD
影响因子:0.309
ISSN:1673-3819
年,卷(期):2024.46(3)
  • 23