首页|基于改进孤立森林算法的Linux日志异常检测方法

基于改进孤立森林算法的Linux日志异常检测方法

扫码查看
为高效、正确地识别Linux日志中的异常行为,提出一种基于改进孤立森林算法的Linux日志异常检测方法.该方法在孤立森林算法的基础上引入注意力机制,在处理日志数据时能够动态地调整关注的特征和样本点,并根据样本的异常程度动态调整关注的程度.实验结果表明,该方法相较于传统方法,在精确率、性能等方面均有显著提升.
Linux log anomaly detection method based on improved isolated forest algorithm
In order to efficiently and correctly identify abnormal behaviors in Linux logs,this paper proposes a Linux log a-nomaly detection method based on the improved isolated forest algorithm.The method introduces an attention mechanism on the basis of the isolated forest algorithm,which can dynamically adjust the attention features and sample points when process-ing log data,and dynamically adjust the degree of attention according to the degree of abnormality of the samples.Experi-mental results show that the method achieves high efficiency in the Linux log anomaly detection task compared with traditional methods,and can effectively discover potential security threats and abnormal behaviors.

anomaly detectionLinux log dataisolated forestsattention mechanisms

赵海涛、李红烨

展开 >

海装上海局驻上海第一军事代表室,上海 201913

中国舰船研究院,北京 100101

异常检测 Linux日志数据 孤立森林 注意力机制

2024

指挥控制与仿真
中国船舶重工集团公司 第七一六研究所

指挥控制与仿真

CSTPCD
影响因子:0.309
ISSN:1673-3819
年,卷(期):2024.46(5)