首页|用户知识问答转移行为研究:从问答社区到生成式AI

用户知识问答转移行为研究:从问答社区到生成式AI

扫码查看
[研究目的]作为一类新兴应用,生成式AI在知识问答领域吸引了众多用户,这可能导致传统的知识问答社区用户流失,因此研究用户转移行为对提高知识问答社区用户粘性来说至关重要.[研究方法]基于PPM(推-拉-锚)模型,整合认知和情感体验因素,研究了用户的知识问答转移行为.对收集的 483 份有效数据采用混合方法包括结构方程模型(SEM)和模糊集定性比较分析(fsQCA)进行分析.[研究结论]研究结果发现,转移意愿受推力因素(信息过载、社区倦怠)、拉力因素(感知拟人度、感知准确度、感知可信度、沉浸体验)和锚定因素(社会影响)的综合影响.fsQCA识别出了三条导致转移意愿的主要路径.研究结果启示问答社区需降低信息过载,缓解用户的社区倦怠,从而实现用户保持和平台可持续发展.
Examining Users'Switching Behavior of Knowledge Q&A:From Q&A Communities to Generative AI
[Research purpose]As an emerging application,generative AI has attracted many users in the knowledge Q&A field,which may lead to users'defection from traditional knowledge Q&A communities.Therefore,it is necessary to examine users'switching behav-ior in order to increase their stickiness toward knowledge Q&A communities.[Research method]Based on the PPM(Push-Pull-Moor-ing)model and integrating both cognitive and emotional factors,this research examined users'switching behavior.483 valid data were collected and analyzed using mixed methods,including SEM and fsQCA.[Research conclusion]The results revealed that switching in-tention is influenced by a combination of push factors(information overload,community fatigue),pull factors(perceived anthropomor-phism,perceived accuracy,perceived trustworthiness,and flow experience),and mooring factor(social influence).The fsQCA identi-fied three main paths leading to switching intention.These results imply that Q&A platforms need to reduce information overload and miti-gate users'fatigue in order to retain them and achieve sustainable development of the platforms.

generative AIQ&A communitiesknowledge Q&Aswitching behaviorPPM

周涛、吴晓颖、邓胜利

展开 >

杭州电子科技大学管理学院 杭州 310018

武汉大学信息管理学院 武汉 430072

生成式AI 问答社区 知识问答 转移行为 PPM

国家自然科学基金国家社会科学基金

7177106922BTQ095

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(2)
  • 40