首页|面向结构化篇级科技文献数据治理的高性能分布式计算框架研究

面向结构化篇级科技文献数据治理的高性能分布式计算框架研究

扫码查看
[研究目的]为解决MapReduce、Spark等主流分布式计算框架存在的研发周期长、技术门槛高等问题,提出了一种高灵活、低门槛的高性能计算框架ArticleCF.[研究方法]ArticleCF框架吸收了主流分布式技术的优点,同时深度结合科技文献数据治理的特性,设计了Master/Slave的软件架构,在功能上针对科技文献数据特点进行多个维度的设计,重点设计了分布式任务分发策略、并行计算策略以及故障转移机制.[研究结论]通过21 个指标将Ar-ticleCF与MapReduce、Spark、Storm进行对比实验,有效验证所提方法的可行性、有效性,ArticleCF能够满足海量结构化科技文献数据的多样化处理需求.
Research on High-Performance Distributed Computing Framework for Structured Article-Level Document Data
[Research purpose]To solve the problems of long R&D cycles and high technology barriers in mainstream distributed compu-ting frameworks such as MapReduce and Spark,a high performance computing framework ArticleCF with high flexibility and low barriers is proposed.[Research method]The ArticleCF framework absorbs the advantages of the mainstream distributed technology,at the same time,it deeply combines the characteristics of data governance of scientific literature,designs the software architecture of Master/Slave,according to the characteristics of scientific and technical literature data,multi-dimensional design is made in function,with emphasis on distributed task distribution strategy,parallel computing strategy and failover mechanism.[Research conclusion]By comparing ArticleCF with MapReduce,Spark and Storm through 21 indexes,the feasibility and validity of the proposed method are verified.ArticleCF meets the diverse processing needs of large amount of structured scientific and technical literature data.

scientific literaturedata governancedistributed computingstructured dataonline visual programminghigh performance computingMapReduceSpark

范萌、常志军、钱力、郭丹

展开 >

中国科学院文献情报中心 北京 100190

中国科学院大学经济与管理学院信息资源管理系 北京 100190

科技文献 数据治理 分布式计算 结构化数据 在线可视化编程 高性能计算 MapReduce Spark

国家社会科学基金

21BTQ106

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(3)
  • 28