首页|基于文本挖掘的开放政府数据与数字经济政策协同研究

基于文本挖掘的开放政府数据与数字经济政策协同研究

扫码查看
[研究目的]政府数据开放已经成为政府转型过程中的重要目标之一,研究数字经济政策和开放政府数据政策之间的协同性,有助于政府的数字化转型及政策更有效的实施.[研究方法]使用LDA模型对采集到的省级和市级政策文本进行预处理,将政策文本高频词分成政策执行主体、政策目标以及政策工具三个维度,使用共现网络分析和关联规则两种方法分别对高频词进行挖掘,探讨两种政策之间的协同性,并对两种方法得出的结论进行对比,探讨两种方法之间的差异性.[研究结论]市级开放政府数据与数字经济政策在政策执行主体、政策目标和政策工具三个维度上具备一定协同性,但两种政策也在某方面存在较大差异,省级政策文件则体现出了纵向和横向的协同性;关联规则和共现网络分析得出的结论具有较高一致性,但两种方法在信息的挖掘上各有优劣.
Research Synergy Between Open Government Data and Digital Economy Policies Based on Text Mining
[Research purpose]Government data openness has become one of the important goals in the process of government transfor-mation.Studying the synergy between the digital economy policy and the open government data policy is conducive to government's digital transformation and more effective implementation of policy documents.[Research method]The studay uses the LDA model to preprocess the provincial and municipal policy texts collected.High-frequency words in policy texts are divided into three dimensions:policy execu-tors,policy objectives and policy tools.Two methods,co-occurrence network analysis and association rules,are used to mine high-fre-quency words and explore the synergy between the two policies.The conclusions drawn from the two methods are compared to explore the differences between them.[Research conclusion]The data of the municipal open government and the digital economy policy have some synergy in the three dimensions of policy implementation subjects,policy objectives and policy tools,and the two policies are also quite different in some aspects;the provincial policy documents reflect the vertical and horizontal synergy;the conclusions drawn from associa-tion rules and co-occurrence network analysis have high consistency,while each method has its own advantages and disadvantages in infor-mation mining.

open datadigital economy policypolicy synergyLDAassociation rulesco-occurrence network analysistext mining

陈美、赵子莜

展开 >

中南财经政法大学公共管理学院 武汉 430073

开放政府数据 数字经济政策 政策协同 LDA 关联规则 共现网络分析 文本挖掘

国家社会科学基金重大项目

21&ZD337

2024

情报杂志
陕西省科学技术信息研究所

情报杂志

CSTPCDCSSCICHSSCD北大核心
影响因子:1.502
ISSN:1002-1965
年,卷(期):2024.43(4)
  • 28